
                        GRAPHICS INTERCHANGE FORMAT(sm)

                                  Version 89a

                            (c)1987,1988,1989,1990

                                   Copyright
                            CompuServe Incorporated
                                Columbus, Ohio

    Cover Sheet for the GIF89a Specification

    DEFERRED CLEAR CODE IN LZW COMPRESSION

    There has been confusion about where clear codes can be found in the
    data stream.  As the specification says, they may appear at anytime.  There
    is not a requirement to send a clear code when the string table is full.

    It is the encoder's decision as to when the table should be cleared.  When
    the table is full, the encoder can chose to use the table as is, making no
    changes to it until the encoder chooses to clear it.  The encoder during
    this time sends out codes that are of the maximum Code Size.

    As we can see from the above, when the decoder's table is full, it must
    not change the table until a clear code is received.  The Code Size is that
    of the maximum Code Size.  Processing other than this is done normally.

    Because of a large base of decoders that do not handle the decompression in
    this manner, we ask developers of GIF encoding software to NOT implement
    this feature until at least January 1991 and later if they see that their
    particular market is not ready for it.  This will give developers of GIF
    decoding software time to implement this feature and to get it into the
    hands of their clients before the decoders start "breaking" on the new
    GIF's.  It is not required that encoders change their software to take
    advantage of the deferred clear code, but it is for decoders.

    APPLICATION EXTENSION BLOCK - APPLICATION IDENTIFIER

    There will be a Courtesy Directory file located on CompuServe in the PICS
    forum.  This directory will contain Application Identifiers for Application
    Extension Blocks that have been used by developers of GIF applications.
    This file is intended to help keep developers that wish to create
    Application Extension Blocks from using the same Application Identifiers.

2/18/05 4:16 PMUntitled

Page 1 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



    This is not an official directory; it is for voluntary participation only
    and does not guarantee that someone will not use the same identifier.

    E-Mail can be sent to Larry Wood (forum manager of PICS) indicating the
    request for inclusion in this file with an identifier.

CompuServe Incorporated                           Graphics Interchange Format
Document Date : 31 July 1990                            Programming Reference

                               Table of Contents

Disclaimer.................................................................  1

Foreword...................................................................  1

Licensing..................................................................  1

About the Document.........................................................  2

General Description........................................................  2

Version Numbers............................................................  2

The Encoder................................................................  3

The Decoder................................................................  3

Compliance.................................................................  3

About Recommendations......................................................  4

About Color Tables.........................................................  4

Blocks, Extensions and Scope...............................................  4

Block Sizes................................................................  5

Using GIF as an embedded protocol..........................................  5

Data Sub-blocks............................................................  5

Block Terminator...........................................................  6

Header.....................................................................  7

Logical Screen Descriptor..................................................  8

Global Color Table......................................................... 10

Image Descriptor........................................................... 11

Local Color Table.......................................................... 13

Table Based Image Data..................................................... 14

Graphic Control Extension.................................................. 15

2/18/05 4:16 PMUntitled

Page 2 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



Comment Extension.......................................................... 17

Plain Text Extension....................................................... 18

Application Extension...................................................... 21

Trailer.................................................................... 23

Quick Reference Table...................................................... 24

GIF Grammar................................................................ 25

Glossary................................................................... 27

Conventions................................................................ 28

Interlaced Images.......................................................... 29

Variable-Length-Code LZW Compression....................................... 30

On-line Capabilities Dialogue.............................................. 33

2/18/05 4:16 PMUntitled

Page 3 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



                                                                         1

1. Disclaimer.

The information provided herein is subject to change without notice. In no
event will CompuServe Incorporated be liable for damages, including any loss of
revenue, loss of profits or other incidental or consequential damages arising
out of the use or inability to use the information; CompuServe Incorporated
makes no claim as to the suitability of the information.

2. Foreword.

This document defines the Graphics Interchange Format(sm). The specification
given here defines version 89a, which is an extension of version 87a.

The Graphics Interchange Format(sm) as specified here should be considered
complete; any deviation from it should be considered invalid, including but not
limited to, the use of reserved or undefined fields within control or data
blocks, the inclusion of extraneous data within or between blocks, the use of
methods or algorithms not specifically listed as part of the format, etc. In
general, any and all deviations, extensions or modifications not specified in
this document should be considered to be in violation of the format and should
be avoided.

3. Licensing.

The Graphics Interchange Format(c) is the copyright property of CompuServe
Incorporated. Only CompuServe Incorporated is authorized to define, redefine,
enhance, alter, modify or change in any way the definition of the format.

CompuServe Incorporated hereby grants a limited, non-exclusive, royalty-free
license for the use of the Graphics Interchange Format(sm) in computer
software; computer software utilizing GIF(sm) must acknowledge ownership of the
Graphics Interchange Format and its Service Mark by CompuServe Incorporated, in
User and Technical Documentation. Computer software utilizing GIF, which is
distributed or may be distributed without User or Technical Documentation must
display to the screen or printer a message acknowledging ownership of the
Graphics Interchange Format and the Service Mark by CompuServe Incorporated; in
this case, the acknowledgement may be displayed in an opening screen or leading
banner, or a closing screen or trailing banner. A message such as the following
may be used:

      "The Graphics Interchange Format(c) is the Copyright property of
      CompuServe Incorporated. GIF(sm) is a Service Mark property of
      CompuServe Incorporated."

For further information, please contact :

      CompuServe Incorporated
      Graphics Technology Department
      5000 Arlington Center Boulevard

2/18/05 4:16 PMUntitled

Page 4 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      Columbus, Ohio  43220
      U. S. A.

CompuServe Incorporated maintains a mailing list with all those individuals and
organizations who wish to receive copies of this document when it is corrected

                                                                         2

or revised. This service is offered free of charge; please provide us with your
mailing address.

4. About the Document.

This document describes in detail the definition of the Graphics Interchange
Format.  This document is intended as a programming reference; it is
recommended that the entire document be read carefully before programming,
because of the interdependence of the various parts. There is an individual
section for each of the Format blocks. Within each section, the sub-section
labeled Required Version refers to the version number that an encoder will have
to use if the corresponding block is used in the Data Stream. Within each
section, a diagram describes the individual fields in the block; the diagrams
are drawn vertically; top bytes in the diagram appear first in the Data Stream.
Bits within a byte are drawn most significant on the left end.  Multi-byte
numeric fields are ordered Least Significant Byte first. Numeric constants are
represented as Hexadecimal numbers, preceded by "0x".  Bit fields within a byte
are described in order from most significant bits to least significant bits.

5. General Description.

The Graphics Interchange Format(sm) defines a protocol intended for the on-line
transmission and interchange of raster graphic data in a way that is
independent of the hardware used in their creation or display.

The Graphics Interchange Format is defined in terms of blocks and sub-blocks
which contain relevant parameters and data used in the reproduction of a
graphic. A GIF Data Stream is a sequence of protocol blocks and sub-blocks
representing a collection of graphics. In general, the graphics in a Data
Stream are assumed to be related to some degree, and to share some control
information; it is recommended that encoders attempt to group together related
graphics in order to minimize hardware changes during processing and to
minimize control information overhead. For the same reason, unrelated graphics
or graphics which require resetting hardware parameters should be encoded
separately to the extent possible.

A Data Stream may originate locally, as when read from a file, or it may
originate remotely, as when transmitted over a data communications line. The
Format is defined with the assumption that an error-free Transport Level
Protocol is used for communications; the Format makes no provisions for
error-detection and error-correction.

The GIF Data Stream must be interpreted in context, that is, the application
program must rely on information external to the Data Stream to invoke the
decoder process.

6. Version Numbers.

2/18/05 4:16 PMUntitled

Page 5 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



The version number in the Header of a Data Stream is intended to identify the
minimum set of capabilities required of a decoder in order to fully process the
Data Stream.  An encoder should use the earliest possible version number that
includes all the blocks used in the Data Stream. Within each block section in
this document, there is an entry labeled Required Version which specifies the

                                                                         3

earliest version number that includes the corresponding block.  The encoder
should make every attempt to use the earliest version number covering all the
blocks in the Data Stream; the unnecessary use of later version numbers will
hinder processing by some decoders.

7. The Encoder.

The Encoder is the program used to create a GIF Data Stream. From raster data
and other information, the encoder produces the necessary control and data
blocks needed for reproducing the original graphics.

The encoder has the following primary responsibilities.

            - Include in the Data Stream all the necessary information to
            reproduce  the graphics.

            - Insure that a Data Stream is labeled with the earliest possible
            Version Number that will cover the definition of all the blocks in
            it; this is to ensure that the largest number of decoders can
            process the Data Stream.

            - Ensure encoding of the graphics in such a way that the decoding
            process is optimized. Avoid redundant information as much as
            possible.

            - To the extent possible, avoid grouping graphics which might
            require resetting hardware parameters during the decoding process.

            - Set to zero (off) each of the bits of each and every field
            designated as reserved. Note that some fields in the Logical Screen
            Descriptor and the Image Descriptor were reserved under Version
            87a, but are used under version 89a.

8. The Decoder.

The Decoder is the program used to process a GIF Data Stream. It processes the
Data Stream sequentially, parsing the various blocks and sub-blocks, using the
control information to set hardware and process parameters and interpreting the
data to render the graphics.

The decoder has the following primary responsibilities.

            - Process each graphic in the Data Stream in sequence, without
            delays other than those specified in the control information.

            - Set its hardware parameters to fit, as closely as possible, the
            control information contained in the Data Stream.

2/18/05 4:16 PMUntitled

Page 6 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



9. Compliance.

An encoder or a decoder is said to comply with a given version of the Graphics
Interchange Format if and only if it fully conforms with and correctly
implements the definition of the standard associated with that version.  An

                                                                         4

encoder or a decoder may be compliant with a given version number and not
compliant with some subsequent version.

10. About Recommendations.

Each block section in this document contains an entry labeled Recommendation;
this section lists a set of recommendations intended to guide and organize the
use of the particular blocks. Such recommendations are geared towards making
the functions of encoders and decoders more efficient, as well as making
optimal use of the communications bandwidth.  It is advised that these
recommendations be followed.

11. About Color Tables.

The GIF format utilizes color tables to render raster-based graphics. A color
table can have one of two different scopes: global or local. A Global Color
Table is used by all those graphics in the Data Stream which do not have a
Local Color Table associated with them. The scope of the Global Color Table is
the entire Data Stream. A Local Color Table is always associated with the
graphic that immediately follows it; the scope of a Local Color Table is
limited to that single graphic. A Local Color Table supersedes a Global Color
Table, that is, if a Data Stream contains a Global Color Table, and an image
has a Local Color Table associated with it, the decoder must save the Global
Color Table, use the Local Color Table to render the image, and then restore
the Global Color Table. Both types of color tables are optional, making it
possible for a Data Stream to contain numerous graphics without a color table
at all. For this reason, it is recommended that the decoder save the last
Global Color Table used until another Global Color Table is encountered. In
this way, a Data Stream which does not contain either a Global Color Table or
a Local Color Table may be processed using the last Global Color Table saved.
If a Global Color Table from a previous Stream is used, that table becomes the
Global Color Table of the present Stream. This is intended to reduce the
overhead incurred by color tables. In particular, it is recommended that an
encoder use only one Global Color Table if all the images in related Data
Streams can be rendered with the same table.  If no color table is available at
all, the decoder is free to use a system color table or a table of its own. In
that case, the decoder may use a color table with as many colors as its
hardware is able to support; it is recommended that such a table have black and
white as its first two entries, so that monochrome images can be rendered
adequately.

The Definition of the GIF Format allows for a Data Stream to contain only the
Header, the Logical Screen Descriptor, a Global Color Table and the GIF
Trailer. Such a Data Stream would be used to load a decoder with a Global Color
Table, in preparation for subsequent Data Streams without a color table at all.

2/18/05 4:16 PMUntitled

Page 7 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



12. Blocks, Extensions and Scope.

Blocks can be classified into three groups : Control, Graphic-Rendering and
Special Purpose.  Control blocks, such as the Header, the Logical Screen
Descriptor, the Graphic Control Extension and the Trailer, contain information
used to control the process of the Data Stream or information  used in setting
hardware parameters.  Graphic-Rendering blocks such as the Image Descriptor and

                                                                         5

the Plain Text Extension contain information and data used to render a graphic
on the display device. Special Purpose blocks such as the Comment Extension and
the Application Extension are neither used to control the process of the Data
Stream nor do they contain information or data used to render a graphic on the
display device. With the exception of the Logical Screen Descriptor and the
Global Color Table, whose scope is the entire Data Stream, all other Control
blocks have a limited scope, restricted to the Graphic-Rendering block that
follows them.  Special Purpose blocks do not delimit the scope of any Control
blocks; Special Purpose blocks are transparent to the decoding process.
Graphic-Rendering blocks and extensions are used as scope delimiters for
Control blocks and extensions. The labels used to identify labeled blocks fall
into three ranges : 0x00-0x7F (0-127) are the Graphic Rendering blocks,
excluding the Trailer (0x3B); 0x80-0xF9 (128-249) are the Control blocks;
0xFA-0xFF (250-255) are the Special Purpose blocks. These ranges are defined so
that decoders can handle block scope by appropriately identifying block labels,
even when the block itself cannot be processed.

13. Block Sizes.

The Block Size field in a block, counts the number of bytes remaining in the
block, not counting the Block Size field itself, and not counting the Block
Terminator, if one is to follow.  Blocks other than Data Blocks are intended to
be of fixed length; the Block Size field is provided in order to facilitate
skipping them, not to allow their size to change in the future.  Data blocks
and sub-blocks are of variable length to accommodate the amount of data.

14. Using GIF as an embedded protocol.

As an embedded protocol, GIF may be part of larger application protocols,
within which GIF is used to render graphics.  In such a case, the application
protocol could define a block within which the GIF Data Stream would be
contained. The application program would then invoke a GIF decoder upon
encountering a block of type GIF.  This approach is recommended in favor of
using Application Extensions, which become overhead for all other applications
that do not process them. Because a GIF Data Stream must be processed in
context, the application must rely on some means of identifying the GIF Data
Stream outside of the Stream itself.

15. Data Sub-blocks.

      a. Description. Data Sub-blocks are units containing data. They do not
      have a label, these blocks are processed in the context of control
      blocks, wherever data blocks are specified in the format. The first byte
      of the Data sub-block indicates the number of data bytes to follow. A

2/18/05 4:16 PMUntitled

Page 8 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      data sub-block may contain from 0 to 255 data bytes. The size of the
      block does not account for the size byte itself, therefore, the empty
      sub-block is one whose size field contains 0x00.

      b. Required Version.  87a.

                                                                         6

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Block Size                    Byte
     +---------------+
  1  |               |
     +-             -+
  2  |               |
     +-             -+
  3  |               |
     +-             -+
     |               |       Data Values                   Byte
     +-             -+
 up  |               |
     +-   . . . .   -+
 to  |               |
     +-             -+
     |               |
     +-             -+
255  |               |
     +---------------+

            i) Block Size - Number of bytes in the Data Sub-block; the size
            must be within 0 and 255 bytes, inclusive.

            ii) Data Values - Any 8-bit value. There must be exactly as many
            Data Values as specified by the Block Size field.

      d. Extensions and Scope. This type of block always occurs as part of a
      larger unit. It does not have a scope of itself.

      e. Recommendation. None.

16. Block Terminator.

      a. Description. This zero-length Data Sub-block is used to terminate a
      sequence of Data Sub-blocks. It contains a single byte in the position of
      the Block Size field and does not contain data.

      b. Required Version.  87a.

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type

2/18/05 4:16 PMUntitled

Page 9 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



     +---------------+
  0  |               |       Block Size                    Byte
     +---------------+

            i) Block Size - Number of bytes in the Data Sub-block; this field
            contains the fixed value 0x00.

            ii) Data Values - This block does not contain any data.

                                                                         7

      d. Extensions and Scope. This block terminates the immediately preceding
      sequence of Data Sub-blocks. This block cannot be modified by any
      extension.

      e. Recommendation. None.

17. Header.

      a. Description. The Header identifies the GIF Data Stream in context. The
      Signature field marks the beginning of the Data Stream, and the Version
      field identifies the set of capabilities required of a decoder to fully
      process the Data Stream.  This block is REQUIRED; exactly one Header must
      be present per Data Stream.

      b. Required Version.  Not applicable. This block is not subject to a
      version number. This block must appear at the beginning of every Data
      Stream.

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
   0 |               |       Signature                     3 Bytes
     +-             -+
   1 |               |
     +-             -+
   2 |               |
     +---------------+
   3 |               |       Version                       3 Bytes
     +-             -+
   4 |               |
     +-             -+
   5 |               |
     +---------------+

            i) Signature - Identifies the GIF Data Stream. This field contains
            the fixed value 'GIF'.

            ii) Version - Version number used to format the data stream.
            Identifies the minimum set of capabilities necessary to a decoder
            to fully process the contents of the Data Stream.

            Version Numbers as of 10 July 1990 :       "87a" - May 1987

2/18/05 4:16 PMUntitled

Page 10 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



                                                       "89a" - July 1989

            Version numbers are ordered numerically increasing on the first two
            digits starting with 87 (87,88,...,99,00,...,85,86) and
            alphabetically increasing on the third character (a,...,z).

            iii) Extensions and Scope. The scope of this block is the entire
            Data Stream. This block cannot be modified by any extension.

                                                                         8

      d. Recommendations.

            i) Signature - This field identifies the beginning of the GIF Data
            Stream; it is not intended to provide a unique signature for the
            identification of the data. It is recommended that the GIF Data
            Stream be identified externally by the application. (Refer to
            Appendix G for on-line identification of the GIF Data Stream.)

            ii) Version - ENCODER : An encoder should use the earliest possible
            version number that defines all the blocks used in the Data Stream.
            When two or more Data Streams are combined, the latest of the
            individual version numbers should be used for the resulting Data
            Stream. DECODER : A decoder should attempt to process the data
            stream to the best of its ability; if it encounters a version
            number which it is not capable of processing fully, it should
            nevertheless, attempt to process the data stream to the best of its
            ability, perhaps after warning the user that the data may be
            incomplete.

18. Logical Screen Descriptor.

      a. Description.  The Logical Screen Descriptor contains the parameters
      necessary to define the area of the display device within which the
      images will be rendered.  The coordinates in this block are given with
      respect to the top-left corner of the virtual screen; they do not
      necessarily refer to absolute coordinates on the display device.  This
      implies that they could refer to window coordinates in a window-based
      environment or printer coordinates when a printer is used.

      This block is REQUIRED; exactly one Logical Screen Descriptor must be
      present per Data Stream.

      b. Required Version.  Not applicable. This block is not subject to a
      version number. This block must appear immediately after the Header.

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Logical Screen Width          Unsigned
     +-             -+
  1  |               |
     +---------------+

2/18/05 4:16 PMUntitled

Page 11 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



  2  |               |       Logical Screen Height         Unsigned
     +-             -+
  3  |               |
     +---------------+
  4  | |     | |     |       <Packed Fields>               See below
     +---------------+
  5  |               |       Background Color Index        Byte
     +---------------+
  6  |               |       Pixel Aspect Ratio            Byte
     +---------------+

                                                                         9

     <Packed Fields>  =      Global Color Table Flag       1 Bit
                             Color Resolution              3 Bits
                             Sort Flag                     1 Bit
                             Size of Global Color Table    3 Bits

            i) Logical Screen Width - Width, in pixels, of the Logical Screen
            where the images will be rendered in the displaying device.

            ii) Logical Screen Height - Height, in pixels, of the Logical
            Screen where the images will be rendered in the displaying device.

            iii) Global Color Table Flag - Flag indicating the presence of a
            Global Color Table; if the flag is set, the Global Color Table will
            immediately follow the Logical Screen Descriptor. This flag also
            selects the interpretation of the Background Color Index; if the
            flag is set, the value of the Background Color Index field should
            be used as the table index of the background color. (This field is
            the most significant bit of the byte.)

            Values :    0 -   No Global Color Table follows, the Background
                              Color Index field is meaningless.
                        1 -   A Global Color Table will immediately follow, the
                              Background Color Index field is meaningful.

            iv) Color Resolution - Number of bits per primary color available
            to the original image, minus 1. This value represents the size of
            the entire palette from which the colors in the graphic were
            selected, not the number of colors actually used in the graphic.
            For example, if the value in this field is 3, then the palette of
            the original image had 4 bits per primary color available to create
            the image.  This value should be set to indicate the richness of
            the original palette, even if not every color from the whole
            palette is available on the source machine.

            v) Sort Flag - Indicates whether the Global Color Table is sorted.
            If the flag is set, the Global Color Table is sorted, in order of
            decreasing importance. Typically, the order would be decreasing
            frequency, with most frequent color first. This assists a decoder,
            with fewer available colors, in choosing the best subset of colors;
            the decoder may use an initial segment of the table to render the
            graphic.

2/18/05 4:16 PMUntitled

Page 12 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



            Values :    0 -   Not ordered.
                        1 -   Ordered by decreasing importance, most
                              important color first.

            vi) Size of Global Color Table - If the Global Color Table Flag is
            set to 1, the value in this field is used to calculate the number
            of bytes contained in the Global Color Table. To determine that
            actual size of the color table, raise 2 to [the value of the field
            + 1].  Even if there is no Global Color Table specified, set this
            field according to the above formula so that decoders can choose
            the best graphics mode to display the stream in.  (This field is
            made up of the 3 least significant bits of the byte.)

            vii) Background Color Index - Index into the Global Color Table for

                                                                        10

            the Background Color. The Background Color is the color used for
            those pixels on the screen that are not covered by an image. If the
            Global Color Table Flag is set to (zero), this field should be zero
            and should be ignored.

            viii) Pixel Aspect Ratio - Factor used to compute an approximation
            of the aspect ratio of the pixel in the original image.  If the
            value of the field is not 0, this approximation of the aspect ratio
            is computed based on the formula:

            Aspect Ratio = (Pixel Aspect Ratio + 15) / 64

            The Pixel Aspect Ratio is defined to be the quotient of the pixel's
            width over its height.  The value range in this field allows
            specification of the widest pixel of 4:1 to the tallest pixel of
            1:4 in increments of 1/64th.

            Values :        0 -   No aspect ratio information is given.
                       1..255 -   Value used in the computation.

      d. Extensions and Scope. The scope of this block is the entire Data
      Stream. This block cannot be modified by any extension.

      e. Recommendations. None.

19. Global Color Table.

      a. Description. This block contains a color table, which is a sequence of
      bytes representing red-green-blue color triplets. The Global Color Table
      is used by images without a Local Color Table and by Plain Text
      Extensions. Its presence is marked by the Global Color Table Flag being
      set to 1 in the Logical Screen Descriptor; if present, it immediately
      follows the Logical Screen Descriptor and contains a number of bytes
      equal to
                    3 x 2^(Size of Global Color Table+1).

      This block is OPTIONAL; at most one Global Color Table may be present
      per Data Stream.

      b. Required Version.  87a

2/18/05 4:16 PMUntitled

Page 13 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



                                                                        11

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +===============+
  0  |               |       Red 0                         Byte
     +-             -+
  1  |               |       Green 0                       Byte
     +-             -+
  2  |               |       Blue 0                        Byte
     +-             -+
  3  |               |       Red 1                         Byte
     +-             -+
     |               |       Green 1                       Byte
     +-             -+
 up  |               |
     +-   . . . .   -+       ...
 to  |               |
     +-             -+
     |               |       Green 255                     Byte
     +-             -+
767  |               |       Blue 255                      Byte
     +===============+

      d. Extensions and Scope. The scope of this block is the entire Data
      Stream. This block cannot be modified by any extension.

      e. Recommendation. None.

20. Image Descriptor.

      a. Description. Each image in the Data Stream is composed of an Image
      Descriptor, an optional Local Color Table, and the image data.  Each
      image must fit within the boundaries of the Logical Screen, as defined
      in the Logical Screen Descriptor.

      The Image Descriptor contains the parameters necessary to process a table
      based image. The coordinates given in this block refer to coordinates
      within the Logical Screen, and are given in pixels. This block is a
      Graphic-Rendering Block, optionally preceded by one or more Control

2/18/05 4:16 PMUntitled

Page 14 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      blocks such as the Graphic Control Extension, and may be optionally
      followed by a Local Color Table; the Image Descriptor is always followed
      by the image data.

      This block is REQUIRED for an image.  Exactly one Image Descriptor must
      be present per image in the Data Stream.  An unlimited number of images
      may be present per Data Stream.

      b. Required Version.  87a.

                                                                        12

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Image Separator               Byte
     +---------------+
  1  |               |       Image Left Position           Unsigned
     +-             -+
  2  |               |
     +---------------+
  3  |               |       Image Top Position            Unsigned
     +-             -+
  4  |               |
     +---------------+
  5  |               |       Image Width                   Unsigned
     +-             -+
  6  |               |
     +---------------+
  7  |               |       Image Height                  Unsigned
     +-             -+
  8  |               |
     +---------------+
  9  | | | |   |     |       <Packed Fields>               See below
     +---------------+

     <Packed Fields>  =      Local Color Table Flag        1 Bit
                             Interlace Flag                1 Bit
                             Sort Flag                     1 Bit
                             Reserved                      2 Bits
                             Size of Local Color Table     3 Bits

           i) Image Separator - Identifies the beginning of an Image
           Descriptor. This field contains the fixed value 0x2C.

           ii) Image Left Position - Column number, in pixels, of the left edge
           of the image, with respect to the left edge of the Logical Screen.
           Leftmost column of the Logical Screen is 0.

           iii) Image Top Position - Row number, in pixels, of the top edge of
           the image with respect to the top edge of the Logical Screen. Top

2/18/05 4:16 PMUntitled

Page 15 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



           row of the Logical Screen is 0.

           iv) Image Width - Width of the image in pixels.

           v) Image Height - Height of the image in pixels.

           vi) Local Color Table Flag - Indicates the presence of a Local Color
           Table immediately following this Image Descriptor. (This field is
           the most significant bit of the byte.)

           Values :    0 -   Local Color Table is not present. Use
                             Global Color Table if available.
                       1 -   Local Color Table present, and to follow
                             immediately after this Image Descriptor.

                                                                        13

           vii) Interlace Flag - Indicates if the image is interlaced. An image
           is interlaced in a four-pass interlace pattern; see Appendix E for
           details.

           Values :    0 - Image is not interlaced.
                       1 - Image is interlaced.

            viii) Sort Flag - Indicates whether the Local Color Table is
            sorted.  If the flag is set, the Local Color Table is sorted, in
            order of decreasing importance. Typically, the order would be
            decreasing frequency, with most frequent color first. This assists
            a decoder, with fewer available colors, in choosing the best subset
            of colors; the decoder may use an initial segment of the table to
            render the graphic.

            Values :    0 -   Not ordered.
                        1 -   Ordered by decreasing importance, most
                              important color first.

            ix) Size of Local Color Table - If the Local Color Table Flag is
            set to 1, the value in this field is used to calculate the number
            of bytes contained in the Local Color Table. To determine that
            actual size of the color table, raise 2 to the value of the field
            + 1. This value should be 0 if there is no Local Color Table
            specified. (This field is made up of the 3 least significant bits
            of the byte.)

     d. Extensions and Scope. The scope of this block is the Table-based Image
     Data Block that follows it. This block may be modified by the Graphic
     Control Extension.

     e. Recommendation. None.

21. Local Color Table.

     a. Description. This block contains a color table, which is a sequence of
     bytes representing red-green-blue color triplets. The Local Color Table
     is used by the image that immediately follows. Its presence is marked by

2/18/05 4:16 PMUntitled

Page 16 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



     the Local Color Table Flag being set to 1 in the Image Descriptor; if
     present, the Local Color Table immediately follows the Image Descriptor
     and contains a number of bytes equal to
                          3x2^(Size of Local Color Table+1).
     If present, this color table temporarily becomes the active color table
     and the following image should be processed using it. This block is
     OPTIONAL; at most one Local Color Table may be present per Image
     Descriptor and its scope is the single image associated with the Image
     Descriptor that precedes it.

     b. Required Version.  87a.

                                                                        14

     c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +===============+
  0  |               |       Red 0                         Byte
     +-             -+
  1  |               |       Green 0                       Byte
     +-             -+
  2  |               |       Blue 0                        Byte
     +-             -+
  3  |               |       Red 1                         Byte
     +-             -+
     |               |       Green 1                       Byte
     +-             -+
 up  |               |
     +-   . . . .   -+       ...
 to  |               |
     +-             -+
     |               |       Green 255                     Byte
     +-             -+
767  |               |       Blue 255                      Byte
     +===============+

     d. Extensions and Scope. The scope of this block is the Table-based Image
     Data Block that immediately follows it. This block cannot be modified by
     any extension.

     e. Recommendations. None.

22. Table Based Image Data.

     a. Description. The image data for a table based image consists of a
     sequence of sub-blocks, of size at most 255 bytes each, containing an
     index into the active color table, for each pixel in the image.  Pixel
     indices are in order of left to right and from top to bottom.  Each index
     must be within the range of the size of the active color table, starting

2/18/05 4:16 PMUntitled

Page 17 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



     at 0. The sequence of indices is encoded using the LZW Algorithm with
     variable-length code, as described in Appendix F

     b. Required Version.  87a.

     c. Syntax. The image data format is as follows:

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
     |               |       LZW Minimum Code Size         Byte
     +---------------+

     +===============+
     |               |
     /               /       Image Data                    Data Sub-blocks
     |               |
     +===============+

                                                                        15

            i) LZW Minimum Code Size.  This byte determines the initial number
            of bits used for LZW codes in the image data, as described in
            Appendix F.

     d. Extensions and Scope. This block has no scope, it contains raster
     data. Extensions intended to modify a Table-based image must appear
     before the corresponding Image Descriptor.

     e. Recommendations. None.

23. Graphic Control Extension.

      a. Description. The Graphic Control Extension contains parameters used
      when processing a graphic rendering block. The scope of this extension is
      the first graphic rendering block to follow. The extension contains only
      one data sub-block.

      This block is OPTIONAL; at most one Graphic Control Extension may precede
      a graphic rendering block. This is the only limit to the number of
      Graphic Control Extensions that may be contained in a Data Stream.

      b. Required Version.  89a.

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Extension Introducer          Byte
     +---------------+
  1  |               |       Graphic Control Label         Byte
     +---------------+

     +---------------+
  0  |               |       Block Size                    Byte
     +---------------+
  1  |     |     | | |       <Packed Fields>               See below

2/18/05 4:16 PMUntitled

Page 18 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



     +---------------+
  2  |               |       Delay Time                    Unsigned
     +-             -+
  3  |               |
     +---------------+
  4  |               |       Transparent Color Index       Byte
     +---------------+

     +---------------+
  0  |               |       Block Terminator              Byte
     +---------------+

      <Packed Fields>  =     Reserved                      3 Bits
                             Disposal Method               3 Bits
                             User Input Flag               1 Bit
                             Transparent Color Flag        1 Bit

            i) Extension Introducer - Identifies the beginning of an extension

                                                                        16

            block. This field contains the fixed value 0x21.

            ii) Graphic Control Label - Identifies the current block as a
            Graphic Control Extension. This field contains the fixed value
            0xF9.

            iii) Block Size - Number of bytes in the block, after the Block
            Size field and up to but not including the Block Terminator.  This
            field contains the fixed value 4.

            iv) Disposal Method - Indicates the way in which the graphic is to
            be treated after being displayed.

            Values :    0 -   No disposal specified. The decoder is
                              not required to take any action.
                        1 -   Do not dispose. The graphic is to be left
                              in place.
                        2 -   Restore to background color. The area used by the
                              graphic must be restored to the background color.
                        3 -   Restore to previous. The decoder is required to
                              restore the area overwritten by the graphic with
                              what was there prior to rendering the graphic.
                     4-7 -    To be defined.

            v) User Input Flag - Indicates whether or not user input is
            expected before continuing. If the flag is set, processing will
            continue when user input is entered. The nature of the User input
            is determined by the application (Carriage Return, Mouse Button
            Click, etc.).

            Values :    0 -   User input is not expected.
                        1 -   User input is expected.

            When a Delay Time is used and the User Input Flag is set,
            processing will continue when user input is received or when the

2/18/05 4:16 PMUntitled

Page 19 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



            delay time expires, whichever occurs first.

            vi) Transparency Flag - Indicates whether a transparency index is
            given in the Transparent Index field. (This field is the least
            significant bit of the byte.)

            Values :    0 -   Transparent Index is not given.
                        1 -   Transparent Index is given.

            vii) Delay Time - If not 0, this field specifies the number of
            hundredths (1/100) of a second to wait before continuing with the
            processing of the Data Stream. The clock starts ticking immediately
            after the graphic is rendered. This field may be used in
            conjunction with the User Input Flag field.

            viii) Transparency Index - The Transparency Index is such that when
            encountered, the corresponding pixel of the display device is not
            modified and processing goes on to the next pixel. The index is
            present if and only if the Transparency Flag is set to 1.

            ix) Block Terminator - This zero-length data block marks the end of

                                                                        17

            the Graphic Control Extension.

      d. Extensions and Scope. The scope of this Extension is the graphic
      rendering block that follows it; it is possible for other extensions to
      be present between this block and its target. This block can modify the
      Image Descriptor Block and the Plain Text Extension.

      e. Recommendations.

            i) Disposal Method - The mode Restore To Previous is intended to be
            used in small sections of the graphic; the use of this mode imposes
            severe demands on the decoder to store the section of the graphic
            that needs to be saved. For this reason, this mode should be used
            sparingly.  This mode is not intended to save an entire graphic or
            large areas of a graphic; when this is the case, the encoder should
            make every attempt to make the sections of the graphic to be
            restored be separate graphics in the data stream. In the case where
            a decoder is not capable of saving an area of a graphic marked as
            Restore To Previous, it is recommended that a decoder restore to
            the background color.

            ii) User Input Flag - When the flag is set, indicating that user
            input is expected, the decoder may sound the bell (0x07) to alert
            the user that input is being expected.  In the absence of a
            specified Delay Time, the decoder should wait for user input
            indefinitely.  It is recommended that the encoder not set the User
            Input Flag without a Delay Time specified.

24. Comment Extension.

      a. Description. The Comment Extension contains textual information which
      is not part of the actual graphics in the GIF Data Stream. It is suitable
      for including comments about the graphics, credits, descriptions or any

2/18/05 4:16 PMUntitled

Page 20 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      other type of non-control and non-graphic data.  The Comment Extension
      may be ignored by the decoder, or it may be saved for later processing;
      under no circumstances should a Comment Extension disrupt or interfere
      with the processing of the Data Stream.

      This block is OPTIONAL; any number of them may appear in the Data Stream.

      b. Required Version.  89a.

                                                                        18

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Extension Introducer          Byte
     +---------------+
  1  |               |       Comment Label                 Byte
     +---------------+

     +===============+
     |               |
  N  |               |       Comment Data                  Data Sub-blocks
     |               |
     +===============+

     +---------------+
  0  |               |       Block Terminator              Byte
     +---------------+

            i) Extension Introducer - Identifies the beginning of an extension
            block. This field contains the fixed value 0x21.

            ii) Comment Label - Identifies the block as a Comment Extension.
            This field contains the fixed value 0xFE.

            iii) Comment Data - Sequence of sub-blocks, each of size at most
            255 bytes and at least 1 byte, with the size in a byte preceding
            the data.  The end of the sequence is marked by the Block
            Terminator.

            iv) Block Terminator - This zero-length data block marks the end of
            the Comment Extension.

2/18/05 4:16 PMUntitled

Page 21 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      d. Extensions and Scope. This block does not have scope. This block
      cannot be modified by any extension.

      e. Recommendations.

            i) Data - This block is intended for humans.  It should contain
            text using the 7-bit ASCII character set. This block should
            not be used to store control information for custom processing.

            ii) Position - This block may appear at any point in the Data
            Stream at which a block can begin; however, it is recommended that
            Comment Extensions do not interfere with Control or Data blocks;
            they should be located at the beginning or at the end of the Data
            Stream to the extent possible.

25. Plain Text Extension.

      a. Description. The Plain Text Extension contains textual data and the
      parameters necessary to render that data as a graphic, in a simple form.
      The textual data will be encoded with the 7-bit printable ASCII
      characters.  Text data are rendered using a grid of character cells

                                                                        19

      defined by the parameters in the block fields. Each character is rendered
      in an individual cell. The textual data in this block is to be rendered
      as mono-spaced characters, one character per cell, with a best fitting
      font and size. For further information, see the section on
      Recommendations below. The data characters are taken sequentially from
      the data portion of the block and rendered within a cell, starting with
      the upper left cell in the grid and proceeding from left to right and
      from top to bottom. Text data is rendered until the end of data is
      reached or the character grid is filled.  The Character Grid contains an
      integral number of cells; in the case that the cell dimensions do not
      allow for an integral number, fractional cells must be discarded; an
      encoder must be careful to specify the grid dimensions accurately so that
      this does not happen. This block requires a Global Color Table to be
      available; the colors used by this block reference the Global Color Table
      in the Stream if there is one, or the Global Color Table from a previous
      Stream, if one was saved. This block is a graphic rendering block,
      therefore it may be modified by a Graphic Control Extension.  This block
      is OPTIONAL; any number of them may appear in the Data Stream.

      b. Required Version.  89a.

2/18/05 4:16 PMUntitled

Page 22 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



                                                                        20

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Extension Introducer          Byte
     +---------------+
  1  |               |       Plain Text Label              Byte
     +---------------+

     +---------------+
  0  |               |       Block Size                    Byte
     +---------------+
  1  |               |       Text Grid Left Position       Unsigned
     +-             -+
  2  |               |
     +---------------+
  3  |               |       Text Grid Top Position        Unsigned
     +-             -+
  4  |               |
     +---------------+
  5  |               |       Text Grid Width               Unsigned
     +-             -+
  6  |               |
     +---------------+
  7  |               |       Text Grid Height              Unsigned
     +-             -+
  8  |               |
     +---------------+
  9  |               |       Character Cell Width          Byte
     +---------------+
 10  |               |       Character Cell Height         Byte
     +---------------+
 11  |               |       Text Foreground Color Index   Byte
     +---------------+

2/18/05 4:16 PMUntitled

Page 23 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



 12  |               |       Text Background Color Index   Byte
     +---------------+

     +===============+
     |               |
  N  |               |       Plain Text Data               Data Sub-blocks
     |               |
     +===============+

     +---------------+
  0  |               |       Block Terminator              Byte
     +---------------+

            i) Extension Introducer - Identifies the beginning of an extension
            block. This field contains the fixed value 0x21.

            ii) Plain Text Label - Identifies the current block as a Plain Text
            Extension. This field contains the fixed value 0x01.

            iii) Block Size - Number of bytes in the extension, after the Block
            Size field and up to but not including the beginning of the data
            portion. This field contains the fixed value 12.

                                                                        21

            iv) Text Grid Left Position - Column number, in pixels, of the left
            edge of the text grid, with respect to the left edge of the Logical
            Screen.

            v) Text Grid Top Position - Row number, in pixels, of the top edge
            of the text grid, with respect to the top edge of the Logical
            Screen.

            vi) Image Grid Width - Width of the text grid in pixels.

            vii) Image Grid Height - Height of the text grid in pixels.

            viii) Character Cell Width - Width, in pixels, of each cell in the
            grid.

            ix) Character Cell Height - Height, in pixels, of each cell in the
            grid.

            x) Text Foreground Color Index - Index into the Global Color Table
            to be used to render the text foreground.

            xi) Text Background Color Index - Index into the Global Color Table
            to be used to render the text background.

            xii) Plain Text Data - Sequence of sub-blocks, each of size at most
            255 bytes and at least 1 byte, with the size in a byte preceding
            the data.  The end of the sequence is marked by the Block
            Terminator.

            xiii) Block Terminator - This zero-length data block marks the end
            of the Plain Text Data Blocks.

      d. Extensions and Scope. The scope of this block is the Plain Text Data

2/18/05 4:16 PMUntitled

Page 24 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      Block contained in it. This block may be modified by the Graphic Control
      Extension.

      e. Recommendations. The data in the Plain Text Extension is assumed to be
      preformatted. The selection of font and size is left to the discretion of
      the decoder.  If characters less than 0x20 or greater than 0xf7 are
      encountered, it is recommended that the decoder display a Space character
      (0x20). The encoder should use grid and cell dimensions such that an
      integral number of cells fit in the grid both horizontally as well as
      vertically.  For broadest compatibility, character cell dimensions should
      be around 8x8 or 8x16 (width x height); consider an image for unusual
      sized text.

26. Application Extension.

      a. Description. The Application Extension contains application-specific
      information; it conforms with the extension block syntax, as described
      below, and its block label is 0xFF.

      b. Required Version.  89a.

                                                                        22

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       Extension Introducer          Byte
     +---------------+
  1  |               |       Extension Label               Byte
     +---------------+

     +---------------+
  0  |               |       Block Size                    Byte
     +---------------+
  1  |               |
     +-             -+
  2  |               |
     +-             -+
  3  |               |       Application Identifier        8 Bytes
     +-             -+
  4  |               |
     +-             -+
  5  |               |
     +-             -+
  6  |               |
     +-             -+
  7  |               |
     +-             -+
  8  |               |
     +---------------+
  9  |               |
     +-             -+
 10  |               |       Appl. Authentication Code     3 Bytes

2/18/05 4:16 PMUntitled

Page 25 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



     +-             -+
 11  |               |
     +---------------+

     +===============+
     |               |
     |               |       Application Data              Data Sub-blocks
     |               |
     |               |
     +===============+

     +---------------+
  0  |               |       Block Terminator              Byte
     +---------------+

            i) Extension Introducer - Defines this block as an extension. This
            field contains the fixed value 0x21.

            ii) Application Extension Label - Identifies the block as an
            Application Extension. This field contains the fixed value 0xFF.

            iii) Block Size - Number of bytes in this extension block,
            following the Block Size field, up to but not including the
            beginning of the Application Data. This field contains the fixed
            value 11.

                                                                        23

            iv) Application Identifier - Sequence of eight printable ASCII
            characters used to identify the application owning the Application
            Extension.

            v) Application Authentication Code - Sequence of three bytes used
            to authenticate the Application Identifier. An Application program
            may use an algorithm to compute a binary code that uniquely
            identifies it as the application owning the Application Extension.

      d. Extensions and Scope. This block does not have scope. This block
      cannot be modified by any extension.

      e. Recommendation. None.

27. Trailer.

      a. Description. This block is a single-field block indicating the end of
      the GIF Data Stream.  It contains the fixed value 0x3B.

      b. Required Version.  87a.

      c. Syntax.

      7 6 5 4 3 2 1 0        Field Name                    Type
     +---------------+
  0  |               |       GIF Trailer                   Byte
     +---------------+

2/18/05 4:16 PMUntitled

Page 26 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



      d. Extensions and Scope. This block does not have scope, it terminates
      the GIF Data Stream. This block may not be modified by any extension.

      e. Recommendations. None.

                                                                        24

Appendix
A. Quick Reference Table.

Block Name                  Required   Label       Ext.   Vers.
Application Extension       Opt. (*)   0xFF (255)  yes    89a
Comment Extension           Opt. (*)   0xFE (254)  yes    89a
Global Color Table          Opt. (1)   none        no     87a
Graphic Control Extension   Opt. (*)   0xF9 (249)  yes    89a
Header                      Req. (1)   none        no     N/A
Image Descriptor            Opt. (*)   0x2C (044)  no     87a (89a)
Local Color Table           Opt. (*)   none        no     87a
Logical Screen Descriptor   Req. (1)   none        no     87a (89a)
Plain Text Extension        Opt. (*)   0x01 (001)  yes    89a
Trailer                     Req. (1)   0x3B (059)  no     87a

Unlabeled Blocks
Header                      Req. (1)   none        no     N/A
Logical Screen Descriptor   Req. (1)   none        no     87a (89a)
Global Color Table          Opt. (1)   none        no     87a
Local Color Table           Opt. (*)   none        no     87a

Graphic-Rendering Blocks
Plain Text Extension        Opt. (*)   0x01 (001)  yes    89a
Image Descriptor            Opt. (*)   0x2C (044)  no     87a (89a)

Control Blocks
Graphic Control Extension   Opt. (*)   0xF9 (249)  yes    89a

Special Purpose Blocks
Trailer                     Req. (1)   0x3B (059)  no     87a
Comment Extension           Opt. (*)   0xFE (254)  yes    89a

2/18/05 4:16 PMUntitled

Page 27 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



Application Extension       Opt. (*)   0xFF (255)  yes    89a

legend:           (1)   if present, at most one occurrence
                  (*)   zero or more occurrences
                  (+)   one or more occurrences

Notes : The Header is not subject to Version Numbers.
(89a) The Logical Screen Descriptor and the Image Descriptor retained their
syntax from version 87a to version 89a, but some fields reserved under version
87a are used under version 89a.

                                                                        25

Appendix
B. GIF Grammar.

A Grammar is a form of notation to represent the sequence in which certain
objects form larger objects.  A grammar is also used to represent the number of
objects that can occur at a given position.  The grammar given here represents
the sequence of blocks that form the GIF Data Stream. A grammar is given by
listing its rules.  Each rule consists of the left-hand side, followed by some
form of equals sign, followed by the right-hand side.  In a rule, the
right-hand side describes how the left-hand side is defined. The right-hand
side consists of a sequence of entities, with the possible presence of special
symbols. The following legend defines the symbols used in this grammar for GIF.

Legend:           <>    grammar word
                  ::=   defines symbol
                  *     zero or more occurrences
                  +     one or more occurrences
                  |     alternate element
                  []    optional element

Example:

<GIF Data Stream> ::= Header <Logical Screen> <Data>* Trailer

This rule defines the entity <GIF Data Stream> as follows. It must begin with a
Header. The Header is followed by an entity called Logical Screen, which is
defined below by another rule. The Logical Screen is followed by the entity
Data, which is also defined below by another rule. Finally, the entity Data is
followed by the Trailer.  Since there is no rule defining the Header or the
Trailer, this means that these blocks are defined in the document.  The entity
Data has a special symbol (*) following it which means that, at this position,

2/18/05 4:16 PMUntitled

Page 28 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



the entity Data may be repeated any number of times, including 0 times. For
further reading on this subject, refer to a standard text on Programming
Languages.

The Grammar.

<GIF Data Stream> ::=     Header <Logical Screen> <Data>* Trailer

<Logical Screen> ::=      Logical Screen Descriptor [Global Color Table]

<Data> ::=                <Graphic Block>  |
                          <Special-Purpose Block>

<Graphic Block> ::=       [Graphic Control Extension] <Graphic-Rendering Block>

<Graphic-Rendering Block> ::=  <Table-Based Image>  |
                               Plain Text Extension

<Table-Based Image> ::=   Image Descriptor [Local Color Table] Image Data

<Special-Purpose Block> ::=    Application Extension  |
                               Comment Extension

                                                                        26

NOTE : The grammar indicates that it is possible for a GIF Data Stream to
contain the Header, the Logical Screen Descriptor, a Global Color Table and the
GIF Trailer. This special case is used to load a GIF decoder with a Global
Color Table, in preparation for subsequent Data Streams without color tables at
all.

2/18/05 4:16 PMUntitled

Page 29 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



                                                                        27

Appendix
C. Glossary.

Active Color Table - Color table used to render the next graphic. If the next
graphic is an image which has a Local Color Table associated with it, the
active color table becomes the Local Color Table associated with that image.
If the next graphic is an image without a Local Color Table, or a Plain Text
Extension, the active color table is the Global Color Table associated with the
Data Stream, if there is one; if there is no Global Color Table in the Data
Stream, the active color table is a color table saved from a previous Data
Stream, or one supplied by the decoder.

Block - Collection of bytes forming a protocol unit. In general, the term
includes labeled and unlabeled blocks, as well as Extensions.

Data Stream - The GIF Data Stream is composed of blocks and sub-blocks
representing images and graphics, together with control information to render
them on a display device. All control and data blocks in the Data Stream must
follow the Header and must precede the Trailer.

Decoder - A program capable of processing a GIF Data Stream to render the
images and graphics contained in it.

Encoder - A program capable of capturing and formatting image and graphic
raster data, following the definitions of the Graphics Interchange Format.

Extension - A protocol block labeled by the Extension Introducer 0x21.

Extension Introducer - Label (0x21) defining an Extension.

Graphic - Data which can be rendered on the screen by virtue of some algorithm.
The term graphic is more general than the term image; in addition to images,
the term graphic also includes data such as text, which is rendered using
character bit-maps.

2/18/05 4:16 PMUntitled

Page 30 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



Image - Data representing a picture or a drawing; an image is represented by an
array of pixels called the raster of the image.

Raster - Array of pixel values representing an image.

                                                                        28

Appendix
D. Conventions.

Animation - The Graphics Interchange Format is not intended as a platform for
animation, even though it can be done in a limited way.

Byte Ordering - Unless otherwise stated, multi-byte numeric fields are ordered
with the Least Significant Byte first.

Color Indices - Color indices always refer to the active color table, either
the Global Color Table or the Local Color Table.

Color Order - Unless otherwise stated, all triple-component RGB color values
are specified in Red-Green-Blue order.

Color Tables - Both color tables, the Global and the Local, are optional; if
present, the Global Color Table is to be used with every image in the Data
Stream for which a Local Color Table is not given; if present, a Local Color
Table overrides the Global Color Table.  However, if neither color table is
present, the application program is free to use an arbitrary color table. If
the graphics in several Data Streams are related and all use the same color
table, an encoder could place the color table as the Global Color Table in the
first Data Stream and leave subsequent Data Streams without a Global Color
Table or any Local Color Tables; in this way, the overhead for the table is
eliminated.  It is recommended that the decoder save the previous Global Color
Table to be used with the Data Stream that follows, in case it does not contain
either a Global Color Table or any Local Color Tables. In general, this allows
the application program to use past color tables, significantly reducing
transmission overhead.

Extension Blocks - Extensions are defined using the Extension Introducer code
to mark the beginning of the block, followed by a block label, identifying the
type of extension.  Extension Codes are numbers in the range from 0x00 to 0xFF,
inclusive. Special purpose extensions are transparent to the decoder and may be
omitted when transmitting the Data Stream on-line. The GIF capabilities

2/18/05 4:16 PMUntitled

Page 31 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



dialogue makes the provision for the receiver to request the transmission of
all blocks; the default state in this regard is no transmission of Special
purpose blocks.

Reserved Fields - All Reserved Fields are expected to have each bit set to zero
(off).

                                                                        29

Appendix
E. Interlaced Images.

The rows of an Interlaced images are arranged in the following order:

      Group 1 : Every 8th. row, starting with row 0.              (Pass 1)
      Group 2 : Every 8th. row, starting with row 4.              (Pass 2)
      Group 3 : Every 4th. row, starting with row 2.              (Pass 3)
      Group 4 : Every 2nd. row, starting with row 1.              (Pass 4)

The Following example illustrates how the rows of an interlaced image are
ordered.

      Row Number                                        Interlace Pass

 0    -----------------------------------------       1
 1    -----------------------------------------                         4
 2    -----------------------------------------                   3
 3    -----------------------------------------                         4
 4    -----------------------------------------             2
 5    -----------------------------------------                         4
 6    -----------------------------------------                   3
 7    -----------------------------------------                         4
 8    -----------------------------------------       1
 9    -----------------------------------------                         4
 10   -----------------------------------------                   3
 11   -----------------------------------------                         4
 12   -----------------------------------------             2
 13   -----------------------------------------                         4
 14   -----------------------------------------                   3
 15   -----------------------------------------                         4
 16   -----------------------------------------       1
 17   -----------------------------------------                         4
 18   -----------------------------------------                   3
 19   -----------------------------------------                         4

2/18/05 4:16 PMUntitled

Page 32 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



                                                                        30

Appendix
F. Variable-Length-Code LZW Compression.

The Variable-Length-Code LZW Compression is a variation of the Lempel-Ziv
Compression algorithm in which variable-length codes are used to replace
patterns detected in the original data. The algorithm uses a code or
translation table constructed from the patterns encountered in the original
data; each new pattern is entered into the table and its index is used to
replace it in the compressed stream.

The compressor takes the data from the input stream and builds a code or
translation table with the patterns as it encounters them; each new pattern is
entered into the code table and its index is added to the output stream; when a
pattern is encountered which had been detected since the last code table
refresh, its index from the code table is put on the output stream, thus
achieving the data compression.  The expander takes input from the compressed
data stream and builds the code or translation table from it; as the compressed
data stream is processed, codes are used to index into the code table and the
corresponding data is put on the decompressed output stream, thus achieving
data decompression.  The details of the algorithm are explained below.  The
Variable-Length-Code aspect of the algorithm is based on an initial code size
(LZW-initial code size), which specifies the initial number of bits used for
the compression codes.  When the number of patterns detected by the compressor
in the input stream exceeds the number of patterns encodable with the current
number of bits, the number of bits per LZW code is increased by one.

The Raster Data stream that represents the actual output image can be
represented as:

         7 6 5 4 3 2 1 0
        +---------------+
        | LZW code size |
        +---------------+

        +---------------+ ----+
        |  block size   |     |

2/18/05 4:16 PMUntitled

Page 33 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



        +---------------+     |
        |               |     +-- Repeated as many
        |  data bytes   |     |   times as necessary.
        |               |     |
        +---------------+ ----+

        . . .       . . . ------- The code that terminates the LZW
                                  compressed data must appear before
                                  Block Terminator.
        +---------------+
        |0 0 0 0 0 0 0 0|  Block Terminator
        +---------------+

The conversion of the image from a series of pixel values to a transmitted or
stored character stream involves several steps. In brief these steps are:

1. Establish the Code Size - Define the number of bits needed to represent the
actual data.

2. Compress the Data - Compress the series of image pixels to a series of

                                                                        31

compression codes.

3. Build a Series of Bytes - Take the set of compression codes and convert to a
string of 8-bit bytes.

4. Package the Bytes - Package sets of bytes into blocks preceded by character
counts and output.

ESTABLISH CODE SIZE

The first byte of the Compressed Data stream is a value indicating the minimum
number of bits required to represent the set of actual pixel values. Normally
this will be the same as the number of color bits. Because of some algorithmic
constraints however, black & white images which have one color bit must be
indicated as having a code size of 2.
This code size value also implies that the compression codes must start out one
bit longer.

COMPRESSION

The LZW algorithm converts a series of data values into a series of codes which
may be raw values or a code designating a series of values. Using text
characters as an analogy, the output code consists of a character or a code
representing a string of characters.

The LZW algorithm used in GIF matches algorithmically with the standard LZW
algorithm with the following differences:

1.  A special Clear code is defined which resets all compression/decompression
parameters and tables to a start-up state. The value of this code is 2**<code
size>. For example if the code size indicated was 4 (image was 4 bits/pixel)
the Clear code value would be 16 (10000 binary). The Clear code can appear at
any point in the image data stream and therefore requires the LZW algorithm to
process succeeding codes as if a new data stream was starting. Encoders should
output a Clear code as the first code of each image data stream.

2/18/05 4:16 PMUntitled

Page 34 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



2. An End of Information code is defined that explicitly indicates the end of
the image data stream. LZW processing terminates when this code is encountered.
It must be the last code output by the encoder for an image. The value of this
code is <Clear code>+1.

3. The first available compression code value is <Clear code>+2.

4. The output codes are of variable length, starting at <code size>+1 bits per
code, up to 12 bits per code. This defines a maximum code value of 4095
(0xFFF). Whenever the LZW code value would exceed the current code length, the
code length is increased by one. The packing/unpacking of these codes must then
be altered to reflect the new code length.

BUILD 8-BIT BYTES

Because the LZW compression used for GIF creates a series of variable length
codes, of between 3 and 12 bits each, these codes must be reformed into a
series of 8-bit bytes that will be the characters actually stored or
transmitted. This provides additional compression of the image. The codes are
formed into a stream of bits as if they were packed right to left and then

                                                                        32

picked off 8 bits at a time to be output.

Assuming a character array of 8 bits per character and using 5 bit codes to be
packed, an example layout would be similar to:

     +---------------+
  0  |               |    bbbaaaaa
     +---------------+
  1  |               |    dcccccbb
     +---------------+
  2  |               |    eeeedddd
     +---------------+
  3  |               |    ggfffffe
     +---------------+
  4  |               |    hhhhhggg
     +---------------+
           . . .
     +---------------+
  N  |               |
     +---------------+

Note that the physical packing arrangement will change as the number of bits
per compression code change but the concept remains the same.

PACKAGE THE BYTES

Once the bytes have been created, they are grouped into blocks for output by
preceding each block of 0 to 255 bytes with a character count byte. A block
with a zero byte count terminates the Raster Data stream for a given image.
These blocks are what are actually output for the GIF image. This block format
has the side effect of allowing a decoding program the ability to read past the
actual image data if necessary by reading block counts and then skipping over

2/18/05 4:16 PMUntitled

Page 35 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



the data.

FURTHER READING

[1] Ziv, J. and Lempel, A. : "A Universal Algorithm for Sequential Data
Compression", IEEE Transactions on Information Theory, May 1977.
[2] Welch, T. : "A Technique for High-Performance Data Compression", Computer,
June 1984.
[3] Nelson, M.R. : "LZW Data Compression", Dr. Dobb's Journal, October 1989.

                                                                        33

Appendix
G. On-line Capabilities Dialogue.

NOTE : This section is currently (10 July 1990) under revision; the information
provided here should be used as general guidelines. Code written based on this
information should be designed in a flexible way to accommodate any changes
resulting from the revisions.

The following sequences are defined for use in mediating control between a GIF
sender and GIF receiver over an interactive communications line. These
sequences do not apply to applications that involve downloading of static GIF
files and are not considered part of a GIF file.

GIF CAPABILITIES ENQUIRY

The GIF Capabilities Enquiry sequence is issued from a host and requests an
interactive GIF decoder to return a response message that defines the graphics
parameters for the decoder. This involves returning information about available
screen sizes, number of bits/color supported and the amount of color detail
supported. The escape sequence for the GIF Capabilities Enquiry is defined as:

ESC[>0g           0x1B 0x5B 0x3E 0x30 0x67

GIF CAPABILITIES RESPONSE

The GIF Capabilities Response message is returned by an interactive GIF decoder
and defines the decoder's display capabilities for all graphics modes that are
supported by the software. Note that this can also include graphics printers as
well as a monitor screen. The general format of this message is:

#version;protocol{;dev, width, height, color-bits, color-res}...<CR>

'#'            GIF Capabilities Response identifier character.

2/18/05 4:16 PMUntitled

Page 36 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



version        GIF format version number;  initially '87a'.
protocol='0'   No end-to-end protocol supported by decoder Transfer as direct
               8-bit data stream.
protocol='1'   Can use CIS B+ error correction protocol to transfer GIF data
               interactively from the host directly to the display.
dev = '0'      Screen parameter set follows.
dev = '1'      Printer parameter set follows.
width          Maximum supported display width in pixels.
height         Maximum supported display height in pixels.
color-bits     Number of bits per pixel supported. The number of supported
               colors is therefore 2**color-bits.
color-res      Number of bits per color component supported in the hardware
               color palette. If color-res is '0' then no hardware palette
               table is available.

Note that all values in the GIF Capabilities Response are returned as ASCII
decimal numbers and the message is terminated by a Carriage Return character.

The following GIF Capabilities Response message describes three standard IBM PC
Enhanced Graphics Adapter configurations with no printer; the GIF data stream

                                                                        34

can be processed within an error correcting protocol:

#87a;1;0,320,200,4,0;0,640,200,2,2;0,640,350,4,2<CR>

ENTER GIF GRAPHICS MODE

Two sequences are currently defined to invoke an interactive GIF decoder into
action. The only difference between them is that different output media are
selected. These sequences are:

ESC[>1g     Display GIF image on screen

                  0x1B 0x5B 0x3E 0x31 0x67

ESC[>2g   Display image directly to an attached graphics printer. The image may
optionally be displayed on the screen as well.

                  0x1B 0x5B 0x3E 0x32 0x67

Note that the 'g' character terminating each sequence is in lowercase.

INTERACTIVE ENVIRONMENT

The assumed environment for the transmission of GIF image data from an
interactive application is a full 8-bit data stream from host to micro.  All
256 character codes must be transferrable. The establishing of an 8-bit data
path for communications will normally be taken care of by the host application
programs. It is however up to the receiving communications programs supporting
GIF to be able to receive and pass on all 256 8-bit codes to the GIF decoder
software.

2/18/05 4:16 PMUntitled

Page 37 of 37http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt



          An Aldus/Microsoft Technical Memorandum:  8/8/88    Page 1

          Preface

          This memorandum  has been prepared jointly by Aldus and Microsoft
          in conjunction  with leading scanner vendors and other interested
          parties.   This document  does not  represent a commitment on the
          part of  either Microsoft  or Aldus  to provide  support for this
          file format  in any  application.   When responding  to  specific
          issues raised  in this memo, or when requesting additional tag or
          field assignments, please address your correspondence to either:

               Developers' Desk    Windows Marketing Group
               Aldus Corporation   Microsoft Corporation
               411 First Ave. South     16011 NE 36th Way
               Suite 200 Box 97017
               Seattle, WA  98104  Redmond, WA  98073-9717
               (206) 622-5500 (206) 882-8080

          Revision Notes

          This revision  replaces "TIFF  Revision 4."   Sections in italics
          are new or substantially changed in this revision.  Also new, but
          not in italics, are Appendices F, G, and H.

          The major enhancements in TIFF 5.0 are:

          1.   Compression of  grayscale and  color images, for better disk
          space utilization.  See Appendix F.

          2.   TIFF Classes - restricted TIFF subsets that can simplify the
          job of  the TIFF  implementor.   You may  wish to scan Appendix G
          before reading the rest of this document.   In fact, you may want
          to use  Appendix G as your main guide, and refer back to the main
          body of  the specification  as needed for details concerning TIFF
          structures and field definitions.

          3.   Support for  "palette color"   images.  See the TIFF Class P
          description  in   Appendix  G,   and  the   new  ColorMap   field
          description.

          4.   Two new  tags that  can be  used to  more fully  define  the
          characteristics of  full color  RGB data, and thereby potentially
          improve the quality of color image reproduction.  See Appendix H.

          The organization  of the  document has also changed slightly.  In
          particular, the  tags are  listed in  alphabetical order,  within
          several categories, in the main body of the specification.

          As always,  every attempt  has been  made to add functionality in
          such a  way as  to minimize  incompatibility problems  with older
          TIFF software.   In  particular, many  TIFF  5.0  files  will  be
          readable even  by older  applications that  assume TIFF 4.0 or an
          earlier version  of the  specification.   One exception  is  with

2/18/05 4:18 PMUntitled

Page 1 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          files that  use the  new TIFF  5.0 LZW  compression scheme.   Old
          applications will  have to  give up  in this case, of course, and
          will do so "gracefully" if they have been following the rules.

          We  are  grateful  to  all  of  the  draft  reviewers  for  their
          suggestions.   Especially helpful  were Herb  Weiner  of  Kitchen
          Wisdom  Publishing   Company,  Brad  Pillow  of  TrueVision,  and
          engineers from Hewlett Packard and Quark.  Chris Sears of Magenta
          Graphics provided information which is included as Appendix H.

          Abstract

          This document  describes TIFF,  a tag  based file  format that is
          designed to promote the interchange of digital image data.

          The fields  were defined  primarily with  desktop publishing  and
          related applications  in mind, although it is possible that other
          sorts of imaging applications may find TIFF to be useful.

          The general  scenario for  which TIFF  was invented  assumes that
          applications software  for scanning  or painting  creates a  TIFF
          file, which  can then  be read and incorporated into a "document"
          or "publication"   by an application such as a desktop publishing
          package.

          TIFF is  not a printer language or page description language, nor
          is it intended to be a general document interchange standard. The
          primary design  goal was  to provide  a rich  environment  within
          which the exchange of image data between application programs can
          be accomplished.   This  richness is  required in  order to  take
          advantage of  the varying  capabilities of  scanners and  similar
          devices.  TIFF is therefore designed to be a superset of existing
          image file  formats for  "desktop"   scanners (and paint programs
          and anything  else that  produces images with pixels in them) and
          will be enhanced on a continuing basis as new capabilities arise.
          A high  priority has been given to structuring the data in such a
          way as  to minimize  the pain  of future  additions.    TIFF  was
          designed to be an extensible interchange format.

          Although TIFF  is claimed  to be  in some sense a rich format, it
          can easily  be used for simple scanners and applications as well,
          since the  application developer  need only be concerned with the
          capabilities that he requires.

          TIFF is intended to be independent of specific operating systems,
          filing systems,  compilers, and processors.  The only significant
          assumption is  that the  storage medium supports something like a
          "file,"   defined as  a sequence  of 8-bit bytes, where the bytes
          are numbered  from 0  to N.   The  largest possible  TIFF file is
          2**32 bytes  in length.   Since TIFF uses pointers (byte offsets)
          quite liberally,  a TIFF  file is  most easily read from a random
          access device  such as a hard disk or flexible diskette, although
          it should  be possible  to read  and write TIFF files on magnetic
          tape.

          The recommended  MS-DOS, UNIX,  and OS/2  file extension for TIFF
          files is  ".TIF."   The recommended Macintosh filetype is "TIFF".
          Suggestions for  conventions in  other computing environments are
          welcome.

2/18/05 4:18 PMUntitled

Page 2 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          1) Structure

          In TIFF, individual fields are identified with a unique tag. This
          allows particular fields to be present or absent from the file as
          required by the application.  For an explanation of the rationale
          behind using a tag structure format, see Appendix A.

          A TIFF file begins with an 8-byte "image file header" that points
          to one  or  more  "image  file  directories."    The  image  file
          directories contain  information about  the images,  as  well  as
          pointers to the actual image data.

          See Figure 1.

          We will now describe these structures in more detail.

          Image file header

          A TIFF  file begins  with an 8-byte image file header, containing
          the following information:

          Bytes 0-1:     The first  word of  the file  specifies  the  byte
          order used within the file.  Legal values are:

                    "II" (hex 4949)
                    "MM" (hex 4D4D)

               In the  "II"   format,  byte  order  is  always  from  least
          significant to  most significant,  for  both  16-bit  and  32-bit
          integers.   In the  "MM"   format, byte order is always from most
          significant to  least significant,  for both  16-bit  and  32-bit
          integers.   In both  formats, character  strings are  stored into
          sequential byte locations.

               All  TIFF  readers should  support  both  byte  orders - see
          Appendix G.

          Bytes 2-3 The second  word of  the  file  is  the  TIFF  "version
          number."   This number, 42 (2A in hex), is not to be equated with
          the current  Revision of  the TIFF  specification.   In fact, the
          TIFF version  number (42)  has never  changed, and probably never
          will.   If it  ever does,  it means that TIFF has changed in some
          way so  radical that  a TIFF  reader should  give up immediately.
          The number 42 was chosen for its deep philosophical significance.
          It can and should be used as additional verification that this is
          indeed a TIFF file.

               A TIFF  file does  not have  a real version/revision number.
          This was  an explicit,  conscious design  decision.  In many file
          formats, fields  take on different meanings depending on a single
          version number.   The  problem is that as the file format "ages,"
          it becomes  increasingly difficult  to document which fields mean
          what in  a given  version, and older software usually has to give
          up if  it encounters  a file  with a  newer version  number.   We
          wanted TIFF  fields to have a permanent and well-defined meaning,
          so that  "older" software  can usually  read "newer"  TIFF files.
          The bottom line is lower software release costs and more reliable
          software.

          Bytes 4-7 This long  word contains  the offset  (in bytes) of the
          first Image File Directory.  The directory may be at any location
          in the  file after  the header but must begin on a word boundary.

2/18/05 4:18 PMUntitled

Page 3 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          In particular,  an Image File Directory may follow the image data
          it describes.   Readers must simply follow the pointers, wherever
          they may lead.

               (The term  "byte offset"  is always used in this document to
          refer to  a location  with respect  to the beginning of the file.
          The first byte of the file has an offset of 0.)

          Image file directory

          An Image  File Directory  (IFD) consists of a 2-byte count of the
          number of  entries (i.e.,  the number  of fields),  followed by a
          sequence of 12-byte field entries, followed by a 4-byte offset of
          the next  Image File  Directory (or 0 if none).  Do not forget to
          write the 4 bytes of 0 after the last IFD.

          Each 12-byte IFD entry has the following format:

          Bytes 0-1 contain the Tag for the field.
          Bytes 2-3 contain the field Type.
          Bytes 4-7 contain the  Length ("Count"  might have  been a better
          term) of the field.
          Bytes 8-11     contain the  Value Offset,  the  file  offset  (in
          bytes) of  the Value  for the  field.   The Value  is expected to
          begin on  a word  boundary; the  corresponding Value  Offset will
          thus be  an even  number.  This file offset may point to anywhere
          in the file, including after the image data.

          The entries  in an  IFD must be sorted in ascending order by Tag.
          Note that this is not the order in which the fields are described
          in this  document.   For a  numerically ordered list of tags, see
          Appendix E.  The Values to which directory entries point need not
          be in any particular order in the file.

          In order  to save time and space, the Value Offset is interpreted
          to contain  the Value  instead of  pointing to  the Value  if the
          Value fits  into 4  bytes.  If the Value is less than 4 bytes, it
          is left-justified within the 4-byte Value Offset, i.e., stored in
          the lower-numbered bytes.  Whether or not the Value fits within 4
          bytes is  determined by  looking at  the Type  and Length  of the
          field.

          The Length  is specified in terms of the data type, not the total
          number of bytes.  A single 16-bit word (SHORT) has a Length of 1,
          not 2,  for example.   The  data  types  and  their  lengths  are
          described below:

          1 = BYTE  An 8-bit unsigned integer.
          2 = ASCII 8-bit bytes  that store ASCII codes; the last byte must
          be null.
          3 = SHORT A 16-bit (2-byte) unsigned integer.
          4 = LONG  A 32-bit (4-byte) unsigned integer.
          5 = RATIONAL   Two LONG's:  the first represents the numerator of
          a fraction, the second the denominator.

          The value of the Length part of an ASCII field entry includes the
          null.   If padding  is necessary, the Length does not include the
          pad byte.   Note  that there  is no  "count byte," as there is in
          Pascal-type strings.   The Length part of the field takes care of
          that.   The null  is not  strictly necessary, but may make things
          slightly simpler for C programmers.

2/18/05 4:18 PMUntitled

Page 4 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          The reader  should check  the type  to ensure  that it is what he
          expects.   TIFF currently  allows more than 1 valid type for some
          fields.   For example,  ImageWidth and ImageLength were specified
          as having  type SHORT.  Very large images with more than 64K rows
          or columns  are possible with some devices even now.  Rather than
          add parallel  LONG tags  for these fields, it is cleaner to allow
          both SHORT  and LONG  for ImageWidth  and similar  fields.    See
          Appendix G for specific recommendations.

          Note that  there may  be more  than one IFD.  Each IFD is said to
          define a "subfile."   One potential use of subsequent subfiles is
          to describe  a "sub-image"   that  is somehow related to the main
          image, such as a reduced resolution version of the image.

          If you have not already done so, you may wish to turn to Appendix
          G to study the sample TIFF images.

          2) Definitions

          Note that the TIFF structure as described in the previous section
          is not  specific to  imaging applications in any way.  It is only

          the definitions of the fields themselves that jointly describe an
          image.

          Before we  begin defining  the fields,  we will define some basic
          concepts.   An image  is defined  to be  a rectangular  array  of
          "pixels,"  each of which consists of one or more "samples."  With
          monochromatic data,  we have  one sample  per pixel, and "sample"
          and "pixel"   can  be  used  interchangeably.    RGB  color  data
          contains three samples per pixel.

          3) The Fields

          This section  describes the  fields defined  in this  version  of
          TIFF.   More fields may be added in future versions - if possible
          they will  be added in such a way so as not to break old software
          that encounters a newer TIFF file.

          The documentation  for each  field contains the name of the field
          (quite arbitrary, but convenient), the Tag value, the field Type,
          the Number of Values (N) expected, comments describing the field,
          and the  default, if  any.  Readers must assume the default value
          if the field does not exist.

          "No default"  does not  mean that  a TIFF  writer should  not pay
          attention to  the tag.  It simply means that there is no default.
          If the  writer has reason to believe that readers will care about
          the value  of this  field, the writer should write the field with
          the appropriate value.  TIFF readers can do whatever they want if
          they encounter a missing "no default" field that they care about,
          short of  refusing to  import the file.  For example, if a writer
          does  not  write  out  a  PhotometricInterpretation  field,  some
          applications will  interpret the  image "correctly,"  and  others
          will display  the image  inverted.  This is not a good situation,
          and writers should be careful not to let it happen.

          The  fields   are  grouped   into  several  categories:    basic,
          informational, facsimile,  document storage and retrieval, and no

2/18/05 4:18 PMUntitled

Page 5 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          longer recommended.   A  future version  of the specification may
          pull some of these categories into separate companion documents.

          Many fields  are described  in this  document, but  most are  not
          "required."   See Appendix  G for  a list  of required fields, as
          well as  examples of  how to combine fields into valid and useful
          TIFF files.
          Basic Fields

          Basic fields  are  fields  that  are  fundamental  to  the  pixel
          architecture or visual characteristics of an image.

          BitsPerSample
          Tag  = 258  (102)
          Type = SHORT
          N    = SamplesPerPixel

          Number of bits per sample.  Note that this tag allows a different
          number of  bits per  sample for  each sample  corresponding to  a
          pixel.   For example, RGB color data could use a different number
          of bits  per sample for each of the three color planes.  Most RGB
          files will have the same number of BitsPerSample for each sample.
          Even in this case, be sure to include all three entries.  Writing
          "8" when you mean "8,8,8" sets a bad precedent for other fields.

          Default = 1.  See also SamplesPerPixel.

          ColorMap
          Tag  = 320 (140)
          Type = SHORT
          N    = 3 * (2**BitsPerSample)

          This tag  defines a  Red-Green-Blue color  map for  palette color
          images.   The palette color pixel value is used to index into all
          3 subcurves.   For  example, a Palette color pixel having a value
          of 0  would be  displayed according  to the 0th entry of the Red,
          Green, and Blue subcurves.

          The subcurves  are stored  sequentially.   The Red  entries  come
          first, followed  by the  Green  entries,  followed  by  the  Blue
          entries.   The length  of each  subcurve is  2**BitsPerSample.  A
          ColorMap entry  for an  8-bit Palette color image would therefore
          have 3  * 256  entries.   The width  of each entry is 16 bits, as
          implied  by  the  type  of  SHORT.    0  represents  the  minimum
          intensity, and  65535 represents the maximum intensity.  Black is
          represented by  0,0,0, and  white by  65535, 65535,  65535.   The
          purpose of  the color  map is to act as a "lookup"  table mapping
          pixel values from 0 to 2**BitsPerSample-1 into RGB triplets.

          The ColorResponseCurves  field may  be used  in conjunction  with
          ColorMap to further refine the meaning of the RGB triplets in the
          ColorMap.   However, the  ColorResponseCurves default  should  be
          sufficient in most cases.

          See also PhotometricInterpretation - palette color.

          No default.   ColorMap  must be  included in  all  palette  color
          images.

2/18/05 4:18 PMUntitled

Page 6 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          ColorResponseCurves
          Tag  = 301 (12D)
          Type = SHORT
          N    = 3 * (2**BitsPerSample)

          This tag  defines three  color response curves, one each for Red,
          Green and  Blue color  information.   The Red entries come first,
          followed by the Green entries, followed by the Blue entries.  The
          length  of   each  subcurve   is  2**BitsPerSample,   using   the
          BitsPerSample value corresponding to the respective primary.  The
          width of  each entry is 16 bits, as implied by the type of SHORT.
          0 represents  the minimum  intensity, and  65535  represents  the
          maximum intensity.   Black  is represented by 0,0,0, and white by
          65535, 65535,  65535.   Therefore, a ColorResponseCurve entry for
          RGB data  where each of the samples is 8 bits deep would have 3 *
          256 entries, each consisting of a SHORT.

          The purpose of the color response curves is to refine the content
          of RGB color images.

          See Appendix H, section VII, for further information.

          Default:  curves based on the NTSC recommended gamma of 2.2.

          Compression
          Tag  = 259  (103)
          Type = SHORT
          N    = 1

          1 =  No compression,  but pack  data into  bytes  as  tightly  as
          possible, with  no unused  bits except  at the end of a row.  The
          bytes are  stored as  an array of type BYTE, for BitsPerSample <=
          8,  SHORT   if  BitsPerSample   >  8  and  <=  16,  and  LONG  if
          BitsPerSample >  16 and <= 32.  The byte ordering of data >8 bits
          must be  consistent with  that specified  in the TIFF file header
          (bytes 0  and 1).   "II"    format  files  will  have  the  least
          significant bytes  preceeding the  most significant  bytes  while
          "MM"  format files will have the opposite.

               If the  number of  bits per  sample is not a power of 2, and
          you are willing to give up some space for better performance, you
          may wish to use the next higher power of 2.  For example, if your
          data can  be represented  in 6 bits, you may wish to specify that
          it is 8 bits deep.

               Rows are  required to  begin on byte boundaries.  The number
          of bytes  per row  is therefore  (ImageWidth *  SamplesPerPixel *
          BitsPerSample  +   7)  /  8,  assuming  integer  arithmetic,  for
          PlanarConfiguration=1.     Bytes  per   row  is   (ImageWidth   *
          BitsPerSample + 7) / 8 for PlanarConfiguration=2.

               Some graphics  systems want rows to be word- or double-word-
          aligned.   Uncompressed TIFF  rows will  need to  be copied  into
          word- or  double-word-padded row  buffers before  being passed to
          the graphics routines in these environments.

          2 =  CCITT Group  3 1-Dimensional  Modified  Huffman  run  length
          encoding.   See Appendix  B:   "Data Compression  --  Scheme  2."
          BitsPerSample must  be 1,  since  this  type  of  compression  is
          defined only for bilevel images.

2/18/05 4:18 PMUntitled

Page 7 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



               When  you  decompress  data  that  has  been  compressed  by
          Compression=2, you  must translate  white runs into 0's and black
          runs into  1's.   Therefore, the normal PhotometricInterpretation
          for those  compression types  is 0  (WhiteIsZero).   If a  reader
          encounters a  PhotometricInterpretation of  1  (BlackIsZero)  for
          such an  image, the  image should  be displayed  and printed with
          black and white reversed.

          5 = LZW Compression,  for grayscale, mapped color, and full color
          images.  See Appendix F.

          32773 =  PackBits compression,  a simple byte oriented run length
          scheme for 1-bit images.  See Appendix C.

          Data compression only applies to raster image data, as pointed to
          by StripOffsets.  All other TIFF information is unaffected.

          Default = 1.

          GrayResponseCurve
          Tag  = 291 (123)
          Type = SHORT
          N    = 2**BitsPerSample

          The purpose  of the  gray response curve and the gray units is to
          provide more  exact photometric  interpretation  information  for
          gray scale image data, in terms of optical density.

          The  GrayScaleResponseUnits   specifies  the   accuracy  of   the
          information contained  in the  curve.   Since optical  density is
          specified in  terms of  fractional numbers, this tag is necessary
          to know  how to  interpret the  stored integer  information.  For
          example, if  GrayScaleResponseUnits is  set to 4 (ten-thousandths
          of a  unit), and a GrayScaleResponseCurve number for gray level 4
          is 3455,  then the  resulting actual  value is  0.3455.   Optical
          densitometers typically measure densities within the range of 0.0
          to 2.0.

          If the  gray scale  response curve  is known  for the data in the
          TIFF file, and if the gray scale response of the output device is
          known, then  an intelligent  conversion can  be made  between the
          input data and the output device.  For example, the output can be
          made to  look just  like the  input.   In addition,  if the input
          image lacks  contrast (as  can be  seen from the response curve),
          then appropriate contrast enhancements can be made.

          The purpose  of the  gray scale  response curve  is to  act as  a
          "lookup"   table mapping values from 0 to 2**BitsPerSample-1 into
          specific   density    values.      The   0th   element   of   the
          GrayResponseCurve array  is used to define the gray value for all
          pixels  having   a  value   of  0,   the  1st   element  of   the
          GrayResponseCurve array  is used to define the gray value for all
          pixels having  a value of 1, and so on, up to 2**BitsPerSample-1.
          If your  data is  "really," say, 7-bit data, but you are adding a
          1-bit pad  to each  pixel to  turn it into 8-bit data, everything
          still works:   If  the data is high-order justified, half of your
          GrayResponseCurve entries  (the odd ones, probably) will never be
          used, but  that doesn't  hurt anything.  If the data is low-order
          justified, your  pixel values  will be between 0 and 127, so make
          your GrayResponseCurve  accordingly.   What your  curve does from
          128 to  255 doesnt matter.  Note that low-order justification is

2/18/05 4:18 PMUntitled

Page 8 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          probably not  a good  idea, however,  since not  all applications
          look at GrayResponseCurve.  Note also that LZW compression yields
          the same  compression ratio  regardless of  whether the  data  is
          high-order or low-order justified.

          It is  permissable to  have a  GrayResponseCurve even for bilevel
          (1-bit) images.   The  GrayResponseCurve will  have 2 values.  It
          should be noted, however, that TIFF B readers are not required to
          pay attention  to  GrayResponseCurves  in  TIFF  B  files.    See
          Appendix G.

          If both  GrayResponseCurve and  PhotometricInterpretation  fields
          exist  in   the  IFD,   GrayResponseCurve  values   override  the
          PhotometricInterpretation value.   But it is a good idea to write
          out both, since some applications do not yet pay attention to the
          GrayResponseCurve.

          Writers may  wish to  purchase a  Kodak Reflection Density Guide,
          catalog number  146 5947,  available for  $10 or  so at  prepress
          supply houses,  to help them figure out reasonable density values
          for their scanner or frame grabber.  If that sounds like too much
          work,   we    recommend   a    curve   that    is    linear    in
          intensity/reflectance.  To compute reflectance from density:  R =
          1 /  pow(10,D).   To compute  density from reflectance: D = log10
          (1/R).   A typical  4-bit GrayResponseCurve  may  look  therefore
          something like:   2000,  1177, 875, 699, 574, 477, 398, 331, 273,
          222, 176,  135, 97, 62, 30, 0, assuming GrayResponseUnit=3.  Such
          a curve would be consistent with PhotometricInterpretation=1.

          See also GrayResponseUnit, PhotometricInterpretation, ColorMap.

          GrayResponseUnit
          Tag  = 290 (122)
          Type = SHORT
          N    = 1

          1 = Number represents tenths of a unit.
          2 = Number represents hundredths of a unit.
          3 = Number represents thousandths of a unit.
          4 = Number represents ten-thousandths of a unit.
          5 = Number represents hundred-thousandths of a unit.

          Modifies GrayResponseCurve.

          See also GrayResponseCurve.

          For historical  reasons, the  default is 2.  However, for greater
          accuracy, we recommend using 3.

          ImageLength
          Tag  = 257  (101)
          Type = SHORT or LONG
          N    = 1

          The image's  length (height) in pixels (Y: vertical).  The number
          of rows  (sometimes described as "scan lines") in the image.  See
          also ImageWidth.

          No default.

2/18/05 4:18 PMUntitled

Page 9 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          ImageWidth
          Tag  = 256  (100)
          Type = SHORT or LONG
          N    = 1

          The image's  width, in  pixels (X:  horizontal).   The number  of
          columns in the image.  See also ImageLength.

          No default.

          NewSubfileType
          Tag =  254  (FE)
          Type = LONG
          N = 1

          Replaces the  old SubfileType  field, due  to limitations  in the
          definition of that field.

          A general  indication of  the kind  of data  that is contained in
          this subfile.   This  field is  made up of a set of 32 flag bits.
          Unused bits are expected to be 0.  Bit 0 is the low-order bit.

          Currently defined values are:

          Bit 0     is 1  if the  image is  a reduced resolution version of
          another image in this TIFF file; else the bit is 0.
          Bit 1     is 1  if the  image is  a single  page of  a multi-page
          image (see the PageNumber tag description); else the bit is 0.
          Bit 2     is 1  if the  image defines  a  transparency  mask  for
          another image  in this  TIFF file.  The PhotometricInterpretation
          value must be 4, designating a transparency mask.

          These values  have been  defined as  bit flags  because they  are
          pretty much independent of each other.  For example, it be useful
          to have  four images  in a  single TIFF  file: a  full resolution
          image, a  reduced resolution  image, a  transparency mask for the
          full resolution  image, and  a transparency  mask for the reduced
          resolution image.  Each of the four images would have a different
          value for the NewSubfileType field.

          Default is 0.

          PhotometricInterpretation
          Tag  = 262  (106)
          Type = SHORT
          N    = 1

          0 =  For bilevel  and grayscale  images:   0 is  imaged as white.
          2**BitsPerSample-1 is  imaged as  black.    If  GrayResponseCurve
          exists,  it   overrides  the   PhotometricInterpretation   value,
          although  it  is  safer  to  make  them  match,  since  some  old
          applications may still be ignoring GrayResponseCurve. This is the
          normal value for Compression=2.

          1 =  For bilevel  and grayscale  images:   0 is  imaged as black.
          2**BitsPerSample-1  is  imaged  as  white.  If  GrayResponseCurve
          exists,  it   overrides  the   PhotometricInterpretation   value,
          although  it  is  safer  to  make  them  match,  since  some  old
          applications may  still be  ignoring GrayResponseCurve.  If  this

2/18/05 4:18 PMUntitled

Page 10 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          value is  specified for  Compression=2, the  image should display
          and print reversed.

          2 = RGB.  In the RGB model, a color is described as a combination
          of the  three primary  colors of  light (red, green, and blue) in
          particular concentrations.   For  each of  the three  samples,  0
          represents minimum intensity, and 2**BitsPerSample - 1 represents
          maximum intensity.   Thus  an RGB  value  of  (0,0,0)  represents
          black,  and   (255,255,255)  represents   white,  assuming  8-bit
          samples.   For PlanarConfiguration = 1, the samples are stored in
          the indicated  order:   first Red,  then Green,  then Blue.   For
          PlanarConfiguration =  2, the  StripOffsets for the sample planes
          are stored  in the  indicated order:   first the Red sample plane
          StripOffsets, then  the Green  plane StripOffsets,  then the Blue
          plane StripOffsets.

               The ColorResponseCurves field may be used to globally refine
          or alter  the color  balance of  an RGB  image without  having to
          change the values of the pixels themselves.

          3="Palette color."     In this  mode, a color is described with a
          single sample.   The  sample is  used as  an index into ColorMap.
          The sample  is used to index into each of the red, green and blue
          curve tables to retrieve an RGB triplet defining an actual color.
          When this  PhotometricInterpretation value  is  used,  the  color
          response curves  must also  be supplied.  SamplesPerPixel must be
          1.

          4 =  Transparency Mask.   This  means that  the image  is used to
          define an  irregularly shaped region of another image in the same
          TIFF  file.     SamplesPerPixel  and  BitsPerSample  must  be  1.
          PackBits compression  is recommended.    The  1-bits  define  the
          interior of  the region;  the 0-bits  define the  exterior of the
          region.  The Transparency Mask must have the same ImageLength and
          ImageWidth as the main image.

               A reader  application can  use the  mask to  determine which
          parts of the image to display.  Main image pixels that correspond
          to 1-bits  in the  transparency mask  are imaged to the screen or
          printer, but  main image  pixels that correspond to 0-bits in the
          mask are not displayed or printed.

               It is  possible to  generalize the  notion of a transparency
          mask to  include partial  transparency, but  it is not clear that
          such information would be useful to a desktop publishing program.

          No default.   That  means that  if you  care  if  your  image  is
          displayed and  printed as  "normal" vs "inverted," you must write
          out this  field.   Do not rely on applications defaulting to what
          you want!   PhotometricInterpretation  =  1  is  recommended  for
          bilevel (except  for Compression=2)  and grayscale images, due to
          popular user  interfaces for changing the brightness and contrast
          of images.

          PlanarConfiguration
          Tag  = 284  (11C)
          Type = SHORT
          N    = 1

          1 =  The sample values for each pixel are stored contiguously, so
          that   there    is   a    single   image    plane.            See

2/18/05 4:18 PMUntitled

Page 11 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          PhotometricInterpretation to  determine the  order of the samples
          within the  pixel data.   So,  for RGB  data, the  data is stored
          RGBRGBRGB...and so on.

          2 =  The samples  are stored  in separate  "sample planes."   The
          values in StripOffsets and StripByteCounts are then arranged as a
          2-dimensional array, with SamplesPerPixel rows and StripsPerImage
          columns.      (All of  the columns  for row  0 are  stored first,
          followed   by    the   columns    of   row   1,   and   so   on.)
          PhotometricInterpretation describes  the type  of  data  that  is
          stored in  each sample  plane.   For example,  RGB data is stored
          with the  Red samples  in one sample plane, the Green in another,
          and the Blue in another.

          If SamplesPerPixel  is 1,  PlanarConfiguration is irrelevant, and
          should not be included.
          Default is 1.  See also BitsPerSample, SamplesPerPixel.

          Predictor
          Tag  = 317 (13D)
          Type = SHORT
          N    = 1

          To be used when Compression=5 (LZW).  See Appendix F.

          1 = No prediction scheme used before coding.

          Default is 1.

          ResolutionUnit
          Tag  = 296 (128)
          Type = SHORT
          N    = 1

          To be used with XResolution and YResolution.

          1 =  No absolute  unit of  measurement.  Used for images that may
          have a  non-square  aspect  ratio,  but  no  meaningful  absolute
          dimensions.   The drawback  of ResolutionUnit=1 is that different
          applications will  import the  image at different sizes.  Even if
          the decision  is quite  arbitrary, it might be better to use dots
          per inch  or  dots  per  centimeter,  and  pick  XResolution  and
          YResolution such that the aspect ratio is correct and the maximum
          dimension of  the image is about four inches (the "four" is quite
          arbitrary.)
          2 = Inch.
          3 = Centimeter.

          Default is 2.  See also XResolution, YResolution.

          RowsPerStrip
          Tag  = 278  (116)
          Type = SHORT or LONG
          N    = 1

          The number  of rows  per strip.  The image data is organized into
          strips for  fast access  to individual  rows  when  the  data  is
          compressed - though this field is valid even  if the  data is not
          compressed.

2/18/05 4:18 PMUntitled

Page 12 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          RowsPerStrip and  ImageLength together  tell  us  the  number  of
          strips in  the entire  image.   The equation  is StripsPerImage =
          (ImageLength + RowsPerStrip - 1) / RowsPerStrip, assuming integer
          arithmetic.

          Note that  either SHORT  or LONG  values can  be used  to specify
          RowsPerStrip.   SHORT values  may be  used for  small TIFF files.
          It should  be noted,  however, that  earlier  TIFF  specification
          revisions required  LONG values  and that  some software  may not
          expect SHORT values.  See Appendix G for further recommendations.

          Default is  2**32 -  1, which  is effectively infinity.  That is,
          the entire  image is  one strip.   We  do not  recommend a single
          strip, however.   Choose  RowsPerStrip such  that each  strip  is
          about 8K  bytes, even  if the  data is  not compressed,  since it
          makes buffering  simpler for  readers.   The "8K"  part is pretty
          arbitrary, but seems to work well.

          See also ImageLength, StripOffsets, StripByteCounts.

          SamplesPerPixel
          Tag  = 277  (115)
          Type = SHORT
          N    = 1

          The number  of samples  per pixel.    SamplesPerPixel  is  1  for
          bilevel, grayscale, and palette color images.  SamplesPerPixel is
          3 for RGB images.

          Default = 1.  See also BitsPerSample, PhotometricInterpretation.

          StripByteCounts
          Tag  = 279  (117)
          Type = SHORT or LONG
          N    = StripsPerImage for PlanarConfiguration equal to 1.
               = SamplesPerPixel  * StripsPerImage  for PlanarConfiguration
          equal to 2

          For each strip, the number of bytes in that strip.  The existence
          of  this   field  greatly   simplifies  the  chore  of  buffering
          compressed data, if the strip size is reasonable.

          No default.  See also StripOffsets, RowsPerStrip.

          StripOffsets
          Tag  = 273  (111)
          Type = SHORT or LONG
          N    = StripsPerImage for PlanarConfiguration equal to 1.
               = SamplesPerPixel  * StripsPerImage  for PlanarConfiguration
          equal to 2

          For each  strip, the  byte offset  of that  strip.  The offset is
          specified with  respect to  the beginning of the TIFF file.  Note
          that this  implies that  each strip has a location independent of
          the locations  of other  strips.   This feature may be useful for
          editing applications.  This field is the only way for a reader to
          find the image data, and hence must exist.

2/18/05 4:18 PMUntitled

Page 13 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Note that  either SHORT or LONG values can be used to specify the
          strip offsets.   SHORT  values  may be used for small TIFF files.
          It should  be noted,  however, that  earlier TIFF  specifications
          required LONG strip offsets and that some software may not expect
          SHORT values.  See Appendix G for further recommendations.

          No default.  See also StripByteCounts, RowsPerStrip.

          XResolution
          Tag  = 282  (11A)
          Type = RATIONAL
          N    = 1

          The number of pixels per ResolutionUnit in the X direction, i.e.,
          in the  ImageWidth direction.   It  is, of  course, not mandatory
          that the  image be  actually printed  at the size implied by this
          parameter.   It is  up to the application to use this information
          as it wishes.

          No default.  See also YResolution, ResolutionUnit.

          YResolution
          Tag  = 283  (11B)
          Type = RATIONAL
          N    = 1

          The number of pixels per ResolutionUnit in the Y direction, i.e.,
          in the ImageLength direction.

          No default.  See also XResolution, ResolutionUnit.

          Informational Fields

          Informational  fields   are  fields   that  can   provide  useful
          information to  a user,  such as where the image came from.  Most
          are ASCII  fields.   An application could have some sort of "More
          Info..." dialog box to display such information.

          Artist
          Tag  = 315  (13B)
          Type = ASCII

          Person who created the image.

          If you need to attach a Copyright notice to an image, this is the
          place to  do it.  In fact, you may wish to write out the contents
          of the field immediately after the 8-byte TIFF header.  Just make
          sure your  IFD and field pointers are set accordingly, and you're
          all set.

          DateTime
          Tag  = 306  (132)
          Type = ASCII
          N    = 20

          Date and  time of  image creation.   Use  the format  "YYYY:MM:DD
          HH:MM:SS", with hours on a 24-hour clock, and one space character

2/18/05 4:18 PMUntitled

Page 14 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          between the  date and  the time.    The  length  of  the  string,
          including the null, is 20 bytes.

          HostComputer
          Tag  = 316  (13C)
          Type = ASCII

          "ENIAC", or whatever.

          See also Make, Model, Software.

          ImageDescription
          Tag  = 270 (10E)
          Type = ASCII

          For example,  a user  may wish  to attach a comment such as "1988
          company picnic" to an image.

          It has  been suggested  that  this  is  what  the  newspaper  and
          magazine industry calls a "slug."

          Make
          Tag  = 271  (10F)
          Type = ASCII

          Manufacturer of the scanner, video digitizer, or whatever.

          See also Model, Software.

          Model
          Tag  = 272  (110)
          Type = ASCII

          The  model  name/number  of  the  scanner,  video  digitizer,  or
          whatever.

          This tag is intended for user information only.

          See also Make, Software.

          Software
          Tag  = 305  (131)
          Type = ASCII

          Name and  release number of the software package that created the
          image.

          This tag is intended for user information only.

          See also Make, Model.

          Facsimile Fields

          Facsimile fields  may be  useful if  you are  using TIFF to store
          facsimile messages  in "raw"  form.  They are not recommended for

2/18/05 4:18 PMUntitled

Page 15 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          use in interchange with desktop publishing applications.

          Compression (a basic tag)
          Tag  = 259  (103)
          Type = SHORT
          N    = 1

          3 =  Facsimile-compatible CCITT  Group 3, exactly as specified in
          "Standardization of  Group 3  facsimile  apparatus  for  document
          transmission,"   Recommendation T.4,  Volume VII, Fascicle VII.3,
          Terminal Equipment  and Protocols  for  Telematic  Services,  The
          International  Telegraph  and  Telephone  Consultative  Committee
          (CCITT), Geneva,  1985, pages  16 through  31.   Each strip  must
          begin on  a byte  boundary.   (But recall  that an image can be a
          single strip.)   Rows  that are  not the first row of a strip are
          not required  to begin on a byte boundary.  The data is stored as
          bytes,  not words - byte-reversal  is   not  allowed.    See  the
          Group3Options field for Group 3 options such as 1D vs 2D coding.

          4 =  Facsimile-compatible CCITT  Group 4, exactly as specified in
          "Facsimile Coding  Schemes and Coding Control Functions for Group
          4 Facsimile Apparatus,"  Recommendation T.6, Volume VII, Fascicle
          VII.3, Terminal  Equipment and  Protocols for Telematic Services,
          The International  Telegraph and Telephone Consultative Committee
          (CCITT), Geneva,  1985, pages  40 through  48.   Each strip  must
          begin on  a byte  boundary.  Rows that are not the first row of a
          strip are  not required to begin on a byte boundary.  The data is
          stored as  bytes, not  words.   See the  Group4Options field  for
          Group 4 options.

          Group3Options
          Tag  = 292  (124)
          Type = LONG
          N    = 1

          See Compression=3.   This  field is  made up  of a set of 32 flag
          bits.   Unused bits are expected to be 0.  Bit 0 is the low-order
          bit.   It is probably not safe to try to read the file if any bit
          of this field is set that you don't know the meaning of.

          Bit 0     is 1  for 2-dimensional  coding (else  1-dimensional is
          assumed).   For 2-D  coding, if more than one strip is specified,
          each strip  must begin  with a  1-dimensionally coded line.  That
          is, RowsPerStrip  should be  a multiple  of  "Parameter  K"    as
          documented in the CCITT specification.

          Bit 1     is 1 if uncompressed mode is used.

          Bit 2     is 1  if fill  bits have been added as necessary before
          EOL codes  such that  EOL always  ends on  a byte  boundary, thus
          ensuring an  eol-sequence of  a 1 byte preceded by a zero nibble:
          xxxx-0000 0000-0001.

          Default  is   0,  for  basic  1-dimensional  coding.    See  also
          Compression.

          Group4Options
          Tag  =  293  (125)
          Type = LONG
          N    = 1

2/18/05 4:18 PMUntitled

Page 16 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          See Compression=4.   This  field is  made up  of a set of 32 flag
          bits.   Unused bits are expected to be 0.  Bit 0 is the low-order
          bit.   It is probably not safe to try to read the file if any bit
          of this  field is  set that  you don't know the meaning of.  Gray
          scale and color coding schemes are under study, and will be added
          when finalized.

          For 2-D  coding, each  strip is  encoded as if it were a separate
          image.   In particular, each strip begins on a byte boundary; and
          the coding  for the first row of a strip is encoded independently
          of the  previous row,  using horizontal codes, as if the previous
          row is  entirely white.   Each strip ends with the 24-bit end-of-
          facsimile block (EOFB).

          Bit 0     is unused.
          Bit 1     is 1 if uncompressed mode is used.

          Default is  0, for  basic 2-dimensional  binary compression.  See
          also Compression.

          Document Storage and Retrieval Fields

          These fields  may be  useful for  document storage  and retrieval
          applications.   They are  not recommended  for use in interchange
          with desktop publishing applications.

          DocumentName
          Tag  = 269  (10D)
          Type = ASCII

          The name of the document from which this image was scanned.

          See also PageName.

          PageName
          Tag  = 285  (11D)
          Type = ASCII

          The name of the page from which this image was scanned.

          See also DocumentName.

          No default.

          PageNumber
          Tag  = 297  (129)
          Type = SHORT
          N    = 2

          This tag is used to specify page numbers of a multiple page (e.g.
          facsimile) document.   Two SHORT values are specified.  The first
          value is the page number; the second value is the total number of
          pages in the document.

          Note that  pages need  not appear  in numerical order.  The first
          page is 0 (zero).

          No default.

2/18/05 4:18 PMUntitled

Page 17 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          XPosition
          Tag  = 286  (11E)
          Type = RATIONAL

          The X  offset of  the left side of the image, with respect to the
          left side of the page, in ResolutionUnits.

          No default.  See also YPosition.

          YPosition
          Tag  = 287  (11F)
          Type = RATIONAL

          The Y  offset of the top of the image, with respect to the top of
          the page, in ResolutionUnits.  In the TIFF coordinate scheme, the
          positive Y  direction  is  down,  so  that  YPosition  is  always
          positive.

          No default.  See also XPosition.

          No Longer Recommended

          These fields  are not  recommended except  perhaps for local use.
          They should  not be used for image interchange.  They have either
          been superseded  by other fields, have been found to have serious
          drawbacks, or are simply not as useful as once thought.  They may
          be dropped entirely from a future revision of the specification.

          CellLength
          Tag  = 265  (109)
          Type = SHORT
          N    = 1

          The length, in 1-bit samples, of the dithering/halftoning matrix.
          Assumes that Threshholding = 2.

          This field,  plus CellWidth  and Threshholding,  are  problematic
          because they  cannot safely be used to reverse-engineer grayscale
          image data  out of dithered/halftoned black-and-white data, which
          is their  only plausible  purpose.  The only "right" way to do it
          is to  not bother  with anything  like these  fields, and instead
          write  some  sophisticated  pattern-matching  software  that  can
          handle screen  angles that  are not  multiples of 45 degrees, and
          other such challenging dithered/halftoned data.

          So we  do not  recommend trying  to convert dithered or halftoned
          data into  grayscale data.   Dithered  and halftoned data require
          careful treatment  to avoid  "stretch marks," but it can be done.
          If you  want grayscale images, get them directly from the scanner
          or frame grabber or whatever.

          No default.  See also Threshholding.

          CellWidth
          Tag  = 264  (108)

2/18/05 4:18 PMUntitled

Page 18 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Type = SHORT
          N    = 1

          The width, in 1-bit samples, of the dithering/halftoning matrix.

          No default.   See  also Threshholding.    See  the  comments  for
          CellLength.

          FillOrder
          Tag  = 266  (10A)
          Type = SHORT
          N    = 1

          The order of data values within a byte.
          1 = most significant bits of the byte are filled first.  That is,
          data values  (or code  words) are  ordered from high order bit to
          low order bit within a byte.
          2 =  least significant  bits are  filled  first.    Since  little
          interest has  been expressed  in least-significant  fill order to
          date, and since it is easy and inexpensive for writers to reverse
          bit order (use a 256-byte lookup table), we recommend FillOrder=2
          for private (non-interchange) use only.

          Default is FillOrder = 1.

          FreeByteCounts
          Tag  = 289  (121)
          Type = LONG

          For each  "free block"   in  the file, the number of bytes in the
          block.

          TIFF  readers   can  ignore  FreeOffsets  and  FreeByteCounts  if
          present.

          FreeOffsets and  FreeByteCounts do  not constitute a remapping of
          the logical address space of the file.

          Since this  information can  be generated  by scanning  the IFDs,
          StripOffsets, and StripByteCounts, FreeByteCounts and FreeOffsets
          are not needed.

          In addition, it is not clear what should happen if FreeByteCounts
          and FreeOffsets exist in more than one IFD.

          See also FreeOffsets.

          FreeOffsets
          Tag  = 288  (120)
          Type = LONG

          For each "free block"  in the file, its byte offset.

          See also FreeByteCounts.

          MaxSampleValue
          Tag  = 281  (119)
          Type = SHORT

2/18/05 4:18 PMUntitled

Page 19 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          N    = SamplesPerPixel

          The maximum  used sample  value.    For  example,  if  the  image
          consists of  6-bit data  low-order-justified  into  8-bit  bytes,
          MaxSampleValue will  be no  greater than 63. This is field is not
          to be  used to  affect the  visual appearance  of the  image when
          displayed.   Nor should  the values  of  this  field  affect  the
          interpretation of  any other  field.    Use  it  for  statistical
          purposes only.

          Default is 2**(BitsPerSample) - 1.

          MinSampleValue
          Tag  = 280  (118)
          Type = SHORT
          N    = SamplesPerPixel

          The minimum  used sample  value.  This field is not to be used to
          affect the  visual appearance  of the  image when displayed.  See
          the comments for MaxSampleValue.

          Default is 0.

          SubfileType
          Tag  = 255  (FF)
          Type = SHORT
          N    = 1

          A general  indication of  the kind  of data  that is contained in
          this subfile.  Currently defined values are:

          1 =  full  resolution  image  data - ImageWidth, ImageLength, and
          StripOffsets are required fields; and
          2 =  reduced resolution image data - ImageWidth, ImageLength, and
          StripOffsets are  required fields.   It is further assumed that a
          reduced resolution  image is  a reduced  version  of  the  entire
          extent of the corresponding full resolution data.
          3 =  single page  of a  multi-page image  (see the PageNumber tag
          description).

          Note that several image types can be found in a single TIFF file,
          with each subfile described by its own IFD.

          No default.

          Continued use  of this  field is not recommended.  Writers should
          instead use the new and more general NewSubfileType field.

          Orientation
          Tag  = 274 (112)
          Type = SHORT
          N    = 1

          1 =  The 0th  row represents the visual top of the image, and the
          0th column represents the visual left hand side.
          2 =  The 0th  row represents the visual top of the image, and the
          0th column represents the visual right hand side.
          3 =  The 0th  row represents  the visual bottom of the image, and
          the 0th column represents the visual right hand side.

2/18/05 4:18 PMUntitled

Page 20 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          4 =  The 0th  row represents  the visual bottom of the image, and
          the 0th column represents the visual left hand side.
          5 =  The 0th  row represents  the visual  left hand  side of  the
          image, and the 0th column represents the visual top.
          6 =  The 0th  row represents  the visual  right hand  side of the
          image, and the 0th column represents the visual top.
          7 =  The 0th  row represents  the visual  right hand  side of the
          image, and the 0th column represents the visual bottom.
          8 =  The 0th  row represents  the visual  left hand  side of  the
          image, and the 0th column represents the visual bottom.

          Default is 1.

          This field is recommended for private (non-interchange) use only.
          It is extremely costly for most readers to perform image rotation
          "on the  fly," i.e.,  when importing  and printing;  and users of
          most  desktop  publishing  applications  do  not  expect  a  file
          imported by the application to be altered permanently in any way.

          Threshholding
          Tag  = 263  (107)
          Type = SHORT
          N    = 1

          1 = a bilevel "line art"  scan.  BitsPerSample must be 1.
          2 =  a "dithered"   scan, usually of continuous tone data such as
          photographs. BitsPerSample must be 1.
          3 = Error Diffused.

          Default is Threshholding = 1.  See also CellWidth, CellLength.
          4) Private Fields

          An organization  may wish to store information that is meaningful
          to only that organization in a TIFF file.  Tags numbered 32768 or
          higher  are  reserved  for  that  purpose.    Upon  request,  the
          administrator will  allocate and register a block of private tags
          for an  organization, to  avoid  possible  conflicts  with  other
          organizations.   Tags are  normally allocated  in blocks of five.
          If that is not enough, feel free to ask for more. You do not need
          to tell  the TIFF administrator or anyone else what you are going
          to use them for.

          Private enumerated  values  can  be  accommodated  in  a  similar
          fashion.   For example,  you may  wish to  experiment with  a new
          compression scheme  within TIFF.   Enumeration constants numbered
          32768 or  higher are  reserved for  private usage.  Upon request,
          the  administrator   will  allocate   and  register  a  block  of
          enumerated values  for a  particular field  (Compression, in  our
          example), to avoid possible conflicts.

          Tags and  values which  are allocated in the private number range
          are not  prohibited from  being included  in a future revision of
          this specification.   Several  such instances can be found in the
          TIFF specification.

          Do not  choose your  own tag  numbers.  If you do, it could cause
          serious problems some day.

          5) Image File Format Issues

2/18/05 4:18 PMUntitled

Page 21 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          In the  quest to  give users no reason NOT to buy a product, some
          scanning and  image editing  applications overwhelm users with an
          incredible number  of "Save  As..." options.  Let's get rid of as
          many of  these as  we possibly  can.   For example, a single TIFF
          choice should  suffice once most major readers are supporting the
          three TIFF compression schemes; then writers can always compress.
          And given  TIFF's flexibility,  including private  tag and  image
          editing  support   features,  there  does  not  seem  to  be  any
          legitimate reason  for continuing  to  write  image  files  using
          proprietary formats.

          Along the  same lines,  there is no excuse for making a user have
          to know  the file  format of  a file  that is  to be  read by  an
          application program.   TIFF  files, as  well as  most other  file
          formats, contain  sufficient information  to enable  software  to
          automatically and  reliably distinguish  one type  of  file  from
          another.

          6) For Further Information

          Contact the  Aldus Developers' Desk for sample TIFF files, source
          code fragments,  and  a  list  of  features  that  are  currently
          supported in  Aldus products.   The Aldus Developers' Desk is the
          current "TIFF administrator."

          Various TIFF  related  aids  are  found  in  Microsoft's  Windows
          Developers Tookit for developers writing Windows applications.

          Finally, a  number of  scanner vendors are providing various TIFF
          services, such  as helping  to distribute  the TIFF specification
          and answering  TIFF questions.   Contact  the appropriate product
          manager or developer support service group.

          Appendix A:  Tag Structure Rationale

          A file  format is  defined by  both form (structure) and content.
          The content of TIFF consists of definitions of individual fields.
          It is therefore the content that we are ultimately interested in.
          The structure  merely tells  us how  to find the fields.  Yet the
          structure deserves  serious consideration for a number of reasons
          that are not at all obvious at first glance.  Since the structure
          described  herein   departs  significantly   from  several  other
          approaches, it may be useful to discuss the rationale behind it.

          The simplest,  most straightforward  structure for something like
          an image  file is  a positional  format.  In a positional scheme,
          the location  of the  data defines  what the  data  means.    For
          example, the  field for  "number of  rows" might  begin  at  byte
          offset 30 in the image file.

          This approach  is simple and easy to implement and is perfect for
          static environments.   But  if a  significant amount  of  ongoing
          change must  be accommodated,  subtle problems  begin to  appear.
          For example,  suppose that  a field  must be superseded by a new,
          more general  field.  You could bump a version number to flag the
          change.   Then  new  software  has  no  problem  doing  something
          sensible with  old data, and all old software will reject the new
          data, even  software that  didn't care about the old field.  This
          may seem like no more than a minor annoyance at first glance, but

2/18/05 4:18 PMUntitled

Page 22 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          causing old  software to  break more  often than  it would really
          need to  can be very costly and, inevitably, causes much gnashing
          of teeth among customers.

          Furthermore, it  can be  avoided.   One approach  is to  store  a
          "valid" flag  bit for each field.  Now you don't have to bump the
          version number,  as long  as you  can put the new field somewhere
          that doesn't  disturb any  of the  old fields.  Old software that
          didn't care about that old field anyway can continue to function.
          (Old software  that did  care will of course have to give up, but
          this is an unavoidable price to be paid for the sake of progress,
          barring total omniscience.)

          Another problem  that crops  up frequently is that certain fields
          are likely  to make  sense only  if  other  fields  have  certain
          values.   This is not such a serious problem in practice; it just
          makes things  more confusing.   Nevertheless,  we note  that  the
          "valid" flag bits described in the previous paragraph can help to
          clarify the situation.

          Field-dumping  programs   can  be  very  helpful  for  diagnostic
          purposes.   A desirable  characteristic of such a program is that
          it doesn't  have to  know much  about what  it is  dumping.    In
          particular, it would be nice if the program could dump ASCII data
          in ASCII  format, integer  data in  integer format,  and  so  on,
          without having  to teach  the program  about new  fields all  the
          time.   So maybe  we should  add a  "data type"  component to our
          fields, plus  information on  how long  the field is, so that our
          dump program can walk through the fields without knowing what the
          fields "mean."

          But note  that if we add one more component to each field, namely
          a tag  that tells  what the field means, we can dispense with the
          "valid" flag  bits, and  we can  also avoid  wasting space on the
          non-valid fields in the file.  Simple image creation applications
          can write out several fields and be done.

          We have  now derived  the essentials  of a  tag-based image  file
          format.

          Finally, a  caveat.  A tag based scheme cannot guarantee painless
          growth.   But is  does provide  a useful  tool to  assist in  the
          process.

          Appendix B:  Data Compression - Scheme 2

          Abstract

          This document  describes a  method for  compressing bilevel  data
          that is  based on  the CCITT  Group 3  1D  facsimile  compression
          scheme.

          References

          1.   "Standardization of Group 3 facsimile apparatus for document
          transmission," Recommendation  T.4, Volume  VII, Fascicle  VII.3,
          Terminal Equipment  and Protocols  for  Telematic  Services,  The
          International  Telegraph  and  Telephone  Consultative  Committee
          (CCITT), Geneva, 1985, pages 16 through 31.

2/18/05 4:18 PMUntitled

Page 23 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          2.   "Facsimile Coding  Schemes and  Coding Control Functions for
          Group 4  Facsimile Apparatus,"  Recommendation T.6,  Volume  VII,
          Fascicle VII.3,  Terminal Equipment  and Protocols  for Telematic
          Services, The  International Telegraph and Telephone Consultative
          Committee (CCITT), Geneva, 1985, pages 40 through 48.

          We do  not believe that these documents are necessary in order to
          implement Compression=2.   We  have included  (verbatim  in  most
          places) all the pertinent information in this Appendix.  However,
          if you  wish to  order the  documents, you  can  write  to  ANSI,
          Attention: Sales,  1430 Broadway, New York, N.Y., 10018.  Ask for
          the publication listed above -it contains both Recommendation T.4
          and T.6.

          Relationship to the CCITT Specifications

          The  CCITT   Group  3   and  Group   4  specifications   describe
          communications protocols for a particular class of devices.  They
          are not  by themselves sufficient to describe a disk data format.
          Fortunately, however,  the CCITT  coding schemes  can be  readily
          adapted to this different environment.  The following is one such
          adaptation.   Most of  the language  is copied  directly from the
          CCITT specifications.

          Coding Scheme

          A line  (row) of  data is composed of a series of variable length
          code words.  Each code word represents a run length of either all
          white or  all black.   (Actually,  more than one code word may be
          required to  code a  given run,  in a  manner  described  below.)
          White runs and black runs alternate.

          In order  to ensure  that the  receiver (decompressor)  maintains
          color synchronization, all data lines will begin with a white run
          length code  word set.   If  the actual  scan line  begins with a
          black run,  a white  run length  of zero  will be sent (written).
          Black or  white run  lengths are  defined by  the code  words  in
          Tables 1  and 2.   The  code words are of two types:  Terminating
          code  words   and  Make-up  code  words.    Each  run  length  is
          represented by  zero or  more  Make-up  code  words  followed  by
          exactly one Terminating code word.

          Run lengths  in the  range of  0 to  63 pels (pixels) are encoded
          with their appropriate Terminating code word.  Note that there is
          a different list of code words for black and white run lengths.

          Run lengths in the range of 64 to 2623 (2560+63) pels are encoded
          first by  the Make-up  code word representing the run length that
          is nearest  to, not  longer than,  that required.   This  is then
          followed by the Terminating code word representing the difference
          between the required run length and the run length represented by
          the Make-up code.

          Run lengths  in the range of lengths longer than or equal to 2624
          pels are  coded first  by the  Make-up code  of  2560.    If  the
          remaining part  of the run (after the first Make-up code of 2560)
          is 2560  pels or  greater, additional Make-up code(s) of 2560 are
          issued until the remaining part of the run becomes less than 2560
          pels.   Then  the  remaining  part  of  the  run  is  encoded  by
          Terminating code  or  by  Make-up  code  plus  Terminating  code,

2/18/05 4:18 PMUntitled

Page 24 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          according to the range mentioned above.

          It is  considered an  unrecoverable error  if the  sum of the run
          lengths for  a line  does not  equal the  value of the ImageWidth
          field.

          New rows always begin on the next available byte boundary.

          No EOL  code words  are used.   No fill bits are used, except for
          the ignored  bits at  the end  of the last byte of a row.  RTC is
          not used.

          Table 1/T.4  Terminating codes

          White          Black
           run Code  run Code
          length    word length    word
           ----     ---- ------    ----

           0   00110101   0   0000110111
           1   000111     1   010
           2   0111  2   11
           3   1000  3   10
           4   1011  4   011
           5   1100  5   0011
           6   1110  6   0010
           7   1111  7   00011
           8   10011      8   000101
           9   10100      9   000100
          10   00111     10   0000100
          11   01000     11   0000101
          12   001000    12   0000111
          13   000011    13   00000100
          14   110100    14   00000111
          15   110101    15   000011000
          16   101010    16   0000010111
          17   101011    17   0000011000
          18   0100111   18   0000001000
          19   0001100   19   00001100111
          20   0001000   20   00001101000
          21   0010111   21   00001101100
          22   0000011   22   00000110111
          23   0000100   23   00000101000
          24   0101000   24   00000010111
          25   0101011   25   00000011000
          26   0010011   26   000011001010
          27   0100100   27   000011001011
          28   0011000   28   000011001100
          29   00000010  29   000011001101
          30   00000011  30   000001101000
          31   00011010  31   000001101001
          32   00011011  32   000001101010
          33   00010010  33   000001101011
          34   00010011  34   000011010010
          35   00010100  35   000011010011
          36   00010101  36   000011010100
          37   00010110  37   000011010101
          38   00010111  38   000011010110
          39   00101000  39   000011010111
          40   00101001  40   000001101100

2/18/05 4:18 PMUntitled

Page 25 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          41   00101010  41   000001101101
          42   00101011  42   000011011010
          43   00101100  43   000011011011
          44   00101101  44   000001010100
          45   00000100  45   000001010101
          46   00000101  46   000001010110
          47   00001010  47   000001010111
          48   00001011  48   000001100100
          49   01010010  49   000001100101
          50   01010011  50   000001010010
          51   01010100  51   000001010011
          52   01010101  52   000000100100
          53   00100100  53   000000110111
          54   00100101  54   000000111000
          55   01011000  55   000000100111
          56   01011001  56   000000101000
          57   01011010  57   000001011000
          58   01011011  58   000001011001
          59   01001010  59   000000101011
          60   01001011  60   000000101100
          61   00110010  61   000001011010
          62   00110011  62   000001100110
          63   00110100  63   000001100111 

          Table 2/T.4  Make-up codes

          White          Black
           run Code  run Code
          length    word      length    word
          ------    ---- ------    ----

            64 11011       64 0000001111
           128 10010      128 000011001000
           192 010111     192 000011001001
           256 0110111    256 000001011011
           320 00110110   320 000000110011
           384 00110111   384 000000110100
           448 01100100   448 000000110101
           512 01100101   512 0000001101100
           576 01101000   576 0000001101101
           640 01100111   640 0000001001010
           704 011001100  704 0000001001011
           768 011001101  768 0000001001100
           832 011010010  832 0000001001101
           896 011010011  896 0000001110010
           960 011010100  960 0000001110011
          1024 011010101 1024 0000001110100
          1088 011010110 1088 0000001110101
          1152 011010111 1152 0000001110110
          1216 011011000 1216 0000001110111
          1280 011011001 1280 0000001010010
          1344 011011010 1344 0000001010011
          1408 011011011 1408 0000001010100
          1472 010011000 1472 0000001010101
          1536 010011001 1536 0000001011010
          1600 010011010 1600 0000001011011
          1664 011000    1664 0000001100100
          1728 010011011 1728 0000001100101
           EOL 000000000001    EOL 000000000001

2/18/05 4:18 PMUntitled

Page 26 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Additional make-up codes

          White
          and
          Black     Make-up
          run  code
          length    word
          ------    ----

          1792 00000001000
          1856 00000001100
          1920 00000001101
          1984 000000010010
          2048 000000010011
          2112 000000010100
          2176 000000010101
          2240 000000010110
          2304 000000010111
          2368 000000011100
          2432 000000011101
          2496 000000011110
          2560 000000011111

          Appendix C: Data Compression - Scheme 32773 -
          "PackBits"

          Abstract

          This document  describes a  simple compression scheme for bilevel
          scanned and paint type files.

          Motivation

          The TIFF  specification defines  a number of compression schemes.
          Compression type  1 is  really no  compression, other  than basic
          pixel  packing.     Compression   type  2,   based  on  CCITT  1D
          compression,  is   powerful,  but   not  trivial   to  implement.
          Compression type  5 is  typically very effective for most bilevel
          images, as  well as  many deeper images such as palette color and
          grayscale images, but is also not trivial to implement.  PackBits
          is a simple but often effective alternative.

          Description

          Several good schemes were already in use in various settings.  We
          somewhat arbitrarily picked the Macintosh PackBits scheme.  It is
          byte oriented,  so there  is no problem with word alignment.  And
          it has a good worst case behavior (at most 1 extra byte for every
          128 input  bytes).    For  Macintosh  users,  there  are  toolbox
          utilities PackBits  and UnPackBits that will do the work for you,
          but it is easy to implement your own routines.

          A pseudo code fragment to unpack might look like this:

2/18/05 4:18 PMUntitled

Page 27 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Loop  until  you  get  the  number  of  unpacked  bytes  you  are
          expecting:
               Read the next source byte into n.
               If n is between 0 and 127 inclusive, copy the next n+1 bytes
          literally.
               Else if  n is  between -127  and -1 inclusive, copy the next
          byte -n+1 times.
               Else if n is 128, noop.
          Endloop

          In the  inverse routine,  it's best to encode a 2-byte repeat run
          as a replicate run except when preceded and followed by a literal
          run, in  which case it's best to merge the three into one literal
          run.  Always encode 3-byte repeats as replicate runs.

          So that's the algorithm.  Here are some other rules:

          o    Each row  must be packed separately.  Do not compress across
          row boundaries.

          o    The number  of uncompressed  bytes per  row is defined to be
          (ImageWidth +  7) / 8.  If the uncompressed bitmap is required to
          have an  even number  of bytes  per row,  decompress  into  word-
          aligned buffers.
          o    If a  run is  larger  than  128  bytes,  simply  encode  the
          remainder of the run as one or more additional replicate runs.

          When  PackBits   data  is  uncompressed,  the  result  should  be
          interpreted as per compression type 1 (no compression).

          Appendix D

          Appendix D  has been  deleted.   It formerly contained guidelines
          for passing  TIFF files on the Microsoft Windows Clipboard.  This
          was judged to not be a good idea, in light of the ever-increasing
          size of  scanned images.   Applications are instead encouraged to
          employ file-based  mechanisms to  exchange  TIFF  data.    Aldus-
          PageMaker, for  example, implements  a "File  Place"  command  to
          allow TIFF files to be imported.

          Appendix E:  Numerical List of TIFF Tags

          NewSubfileType
          Tag  =  254  (FE)
          Type = LONG
          N    = 1

          SubfileType
          Tag  = 255  (FF)
          Type = SHORT
          N    = 1

          ImageWidth
          Tag  = 256  (100)
          Type = SHORT or LONG
          N    = 1

          ImageLength

2/18/05 4:18 PMUntitled

Page 28 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Tag  = 257  (101)
          Type = SHORT or LONG
          N    = 1

          BitsPerSample
          Tag  = 258  (102)
          Type = SHORT
          N    = SamplesPerPixel

          Compression
          Tag  = 259  (103)
          Type = SHORT
          N    = 1

          PhotometricInterpretation
          Tag  = 262  (106)
          Type = SHORT
          N    = 1

          Threshholding
          Tag  = 263  (107)
          Type = SHORT
          N    = 1

          CellWidth
          Tag  = 264  (108)
          Type = SHORT
          N    = 1

          CellLength
          Tag  = 265  (109)
          Type = SHORT
          N    = 1

          FillOrder
          Tag  = 266  (10A)
          Type = SHORT
          N    = 1

          DocumentName
          Tag  = 269  (10D)
          Type = ASCII

          ImageDescription
          Tag  = 270 (10E)
          Type = ASCII

          Make
          Tag  = 271  (10F)
          Type = ASCII

          Model
          Tag  = 272  (110)
          Type = ASCII

          StripOffsets
          Tag  = 273  (111)
          Type = SHORT or LONG
          N    = StripsPerImage for PlanarConfiguration equal to 1.
               = SamplesPerPixel  * StripsPerImage  for PlanarConfiguration
          equal to 2

2/18/05 4:18 PMUntitled

Page 29 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Orientation
          Tag  = 274 (112)
          Type = SHORT
          N    = 1

          SamplesPerPixel
          Tag  = 277  (115)
          Type = SHORT
          N    = 1

          RowsPerStrip
          Tag  = 278  (116)
          Type = SHORT or LONG
          N    = 1

          StripByteCounts
          Tag  = 279  (117)
          Type = LONG or SHORT
          N    = StripsPerImage for PlanarConfiguration equal to 1.
               = SamplesPerPixel  * StripsPerImage  for PlanarConfiguration
          equal to 2.

          MinSampleValue
          Tag  = 280  (118)
          Type = SHORT
          N    = SamplesPerPixel

          MaxSampleValue
          Tag  = 281  (119)
          Type = SHORT
          N    = SamplesPerPixel

          XResolution
          Tag  = 282  (11A)
          Type = RATIONAL
          N    = 1

          YResolution
          Tag  = 283  (11B)
          Type = RATIONAL
          N    = 1

          PlanarConfiguration
          Tag  = 284  (11C)
          Type = SHORT
          N    = 1

          PageName
          Tag  = 285  (11D)
          Type = ASCII

          XPosition
          Tag  = 286  (11E)
          Type = RATIONAL

          YPosition
          Tag  = 287  (11F)
          Type = RATIONAL

          FreeOffsets

2/18/05 4:18 PMUntitled

Page 30 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Tag  = 288  (120)
          Type = LONG

          FreeByteCounts
          Tag  = 289  (121)
          Type = LONG

          GrayResponseUnit
          Tag  = 290 (122)
          Type = SHORT
          N    = 1

          GrayResponseCurve
          Tag  = 291 (123)
          Type = SHORT
          N    = 2**BitsPerSample

          Group3Options
          Tag  = 292  (124)
          Type = LONG
          N    = 1

          Group4Options
          Tag  =  293  (125)
          Type = LONG
          N    = 1

          ResolutionUnit
          Tag  = 296 (128)
          Type = SHORT
          N    = 1

          PageNumber
          Tag  = 297  (129)
          Type = SHORT
          N    = 2

          ColorResponseCurves
          Tag  = 301 (12D)
          Type = SHORT
          N    = 3 * (2**BitsPerSample)

          Software
          Tag  = 305  (131)
          Type = ASCII

          DateTime
          Tag  = 306  (132)
          Type = ASCII
          N    = 20

          Artist
          Tag  = 315  (13B)
          Type = ASCII

          HostComputer
          Tag  = 316  (13C)
          Type = ASCII

          Predictor
          Tag  = 317 (13D)
          Type = SHORT

2/18/05 4:18 PMUntitled

Page 31 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          N    = 1

          WhitePoint
          Tag  = 318 (13E)
          Type = RATIONAL
          N    = 2

          PrimaryChromaticities
          Tag  = 319 (13F)
          Type = RATIONAL
          N    = 6

          ColorMap
          Tag  = 320 (140)
          Type = SHORT
          N    = 3 * (2**BitsPerSample)

          Appendix F:  Data Compression - Scheme 5 - LZW
          Compression

          Abstract

          This document describes an adaptive compression scheme for raster
          images.

          Reference

          Terry  A.   Welch,  "A   Technique  for   High  Performance  Data
          Compression",  IEEE   Computer,  vol.   17  no.  6  (June  1984).
          Describes the  basic Lempel-Ziv  & Welch  (LZW) algorithm.    The
          author's goal  in the  article is  to describe  a  hardware-based
          compressor that could be built into a disk controller or database
          engine, and  used on  all types  of data.   There  is no specific
          discussion of  raster images.    We  intend  to  give  sufficient
          information in  this Appendix so that the article is not required
          reading.

          Requirements

          A compression  scheme with  the following  characteristics should
          work well in a desktop publishing environment:

          o    Must work well for images of any bit depth, including images
          deeper than 8 bits per sample.
          o    Must be effective:  an average compression ratio of at least
          2:1 or  better.    And  it  must  have  a  reasonable  worst-case
          behavior, in case something really strange is thrown at it.
          o    Should  not  depend  on  small  variations  between  pixels.
          Palette color  images tend  to contain  abrupt changes  in  index
          values, due to common patterning and dithering techniques.  These
          abrupt changes  do tend to be repetitive, however, and the scheme
          should make use of this fact.
          o    For images  generated by  paint programs,  the scheme should
          not depend on a particular pattern width.  8x8 pixel patterns are
          common now, but we should not assume that this situation will not
          change.
          o    Must be  fast.   It should  not take  more than 5 seconds to
          decompress a  100K byte  grayscale image on a 68020- or 386-based

2/18/05 4:18 PMUntitled

Page 32 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          computer.   Compression can  be slower,  but probably not by more
          than a factor of 2 or 3.
          o    The level  of implementation  complexity must be reasonable.
          We would like something that can be implemented in no more than a
          couple of  weeks  by  a competent  software  engineer  with  some
          experience  in   image  processing.     The   compiled  code  for
          compression and  decompression combined  should be  no more  than
          about 10K.
          o    Does not require floating point software or hardware.

          The following  sections describe  an algorithm based on the "LZW"
          (Lempel-Ziv & Welch) technique that meets the above requirements.
          In addition  meeting our  requirements,  LZW  has  the  following
          characteristics:

          o    LZW is fully reversible.  All information is preserved.  But
          if noise  or information  is removed  from an  image, perhaps  by
          smoothing or  zeroing some  low-order bitplanes,  LZW  compresses
          images to  a smaller  size.   Thus,   5-bit, 6-bit, or 7-bit data
          masquerading as  8-bit data  compresses better  than  true  8-bit
          data. Smooth  images also  compress better than noisy images, and
          simple images compress better than complex images.
          o    On a  68082- or  386-based computer,  LZW  software  can  be
          written to  compress at  between 30K  and 80K  bytes per  second,
          depending on image characteristics.  LZW decompression speeds are
          typically about 50K bytes per second.
          o    LZW works  well on  bilevel images,  too.   It always  beats
          PackBits,  and   generally  ties   CCITT  1D  (Modified  Huffman)
          compression, on our test images.  Tying CCITT 1D is impressive in
          that LZW  seems to be considerably faster than CCITT 1D, at least
          in our implementation.
          o    Our implementation is written in C, and compiles to about 2K
          bytes of object code each for the compressor and decompressor.
          o    One of  the nice  things about  LZW is that it is used quite
          widely in  other applications  such as  archival programs, and is
          therefore more of a known quantity.

          The Algorithm

          Each strip  is compressed  independently.   We strongly recommend
          that RowsPerStrip  be chosen  such that each strip contains about
          8K bytes  before compression.   We  want to keep the strips small
          enough so  that the  compressed and  uncompressed versions of the
          strip can  be kept entirely in memory even on small machines, but
          large enough to maintain nearly optimal compression ratios.

          The LZW  algorithm is  based on  a translation  table, or  string
          table, that  maps strings  of input  characters into  codes.  The
          TIFF implementation  uses variable-length  codes, with  a maximum
          code length of 12 bits.  This string table is different for every
          strip, and,  remarkably, does  not need to be kept around for the
          decompressor.     The  trick   is  to   make   the   decompressor
          automatically build  the same  table as is built when compressing
          the data.   We  use a  C-like pseudocode  to describe  the coding
          scheme:

               InitializeStringTable();
               WriteCode(ClearCode);
               Omega = the empty string;
               for each character in the strip {

2/18/05 4:18 PMUntitled

Page 33 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



                    K = GetNextCharacter();
                    if Omega+K is in the string table {
                         Omega = Omega+K;  /* string concatenation */
                    } else {
                         WriteCode (CodeFromString(Omega));
                         AddTableEntry(Omega+K);
                         Omega = K;
                    }
               } /* end of for loop */
               WriteCode (CodeFromString(Omega));
               WriteCode (EndOfInformation);

          That's  it.    The  scheme  is  simple,  although  it  is  fairly
          challenging  to  implement  efficiently.    But  we  need  a  few
          explanations before we go on to decompression.

          The  "characters"   that  make  up  the  LZW  strings  are  bytes
          containing TIFF  uncompressed (Compression=1)  image data, in our
          implementation.   For example,  if BitsPerSample is 4, each 8-bit
          LZW character will contain two 4-bit pixels.  If BitsPerSample is
          16, each 16-bit pixel will span two 8-bit LZW characters.

          (It is  also possible to implement a version of LZW where the LZW
          character depth equals BitsPerSample, as was described by Draft 2
          of Revision  5.0.   But  there  is  a  major  problem  with  this
          approach.   If BitsPerSample  is greater  than 11, we can not use
          12-bit-maximum  codes,   so  that  the  resulting  LZW  table  is
          unacceptably large.   Fortunately,  due to the adaptive nature of
          LZW, we  do not  pay a  significant compression ratio penalty for
          combining several  pixels into  one byte before compressing.  For
          example, our  4-bit sample  images  compressed  about  3  percent
          worse, and  our 1-bit  images compressed  about 5 percent better.
          And it  is easier to write an LZW compressor that always uses the
          same character  depth than  it is  to write  one which can handle
          varying depths.)

          We can  now describe  some of the routine and variable references
          in our pseudocode:

          InitializeStringTable() initializes  the string  table to contain
          all possible  single-character strings.   There  are 256 of them,
          numbered 0 through 255, since our characters are bytes.

          WriteCode() writes  a code  to the output stream.  The first code
          written is a Clear code, which is defined to be code #256.

          Omega is our "prefix string."

          GetNextCharacter() retrieves  the next  character value  from the
          input stream.   This  will be number between 0 and 255, since our
          characters are bytes.

          The "+" signs indicate string concatenation.

          AddTableEntry() adds a table entry.  (InitializeStringTable() has
          already put  256 entries  in our table.  Each entry consists of a
          single-character string, and its associated code value, which is,
          in our  application, identical to the character itself.  That is,
          the 0th  entry in  our table  consists of  the string  <0>,  with
          corresponding code  value of  <0>, the  1st entry  in  the  table
          consists of the string <1>, with corresponding code value of <1>,
          ..., and  the 255th  entry in  our table  consists of  the string

2/18/05 4:18 PMUntitled

Page 34 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          <255>, with  corresponding code  value of  <255>.)   So the first
          entry that  we add  to our  string table will be at position 256,
          right?   Well, not  quite, since  we will reserve code #256 for a
          special   "Clear"   code,   and   code   #257   for   a   special
          "EndOfInformation" code  that we will write out at the end of the
          strip.  So the first multiple-character entry added to the string
          table will be at position 258.

          Let's try  an example.   Suppose  we have  input data  that looks
          like:

          Pixel 0:  <7>
          Pixel 1:  <7>
          Pixel 2:  <7>
          Pixel 3:  <8>
          Pixel 4:  <8>
          Pixel 5:  <7>
          Pixel 6:  <7>
          Pixel 7:  <6>
          Pixel 8:  <6>

          First, we read Pixel 0 into K.  OmegaK is then simply <7>, since Omega is
          the empty string at this point.  Is the string <7> already in the
          string table?  Of course, since all single character strings were
          put in the table by InitializeStringTable().  So set Omega equal to
          <7>, and go to the top of the loop.

          Read Pixel 1 into K.  Does OmegaK (<7><7>) exist in the string table?
          No, so we get to do some real work.  We write the code associated
          with Omega to output (write <7> to output), and add OmegaK (<7><7>) to
          the table as entry 258.   Store K (<7>) into Omega.    Note  that
          although we have added the string consisting of Pixel 0 and Pixel
          1 to  the table, we "re-use" Pixel 1 as the beginning of the next
          string.

          Back at the top of the loop.  We read Pixel 2 into K.  Does OmegaK
          (<7><7>) exist  in the  string table?   Yes,  the entry  we  just
          added, entry 258, contains exactly <7><7>.  So we just add K onto
          the end of Omega, so that Omega is now <7><7>.

          Back at the top of the loop.  We read Pixel 3 into K.  Does OmegaK
          (<7><7><8>) exist  in the  string table?   No,  so write the code
          associated with Omega (<258>) to output, and add OmegaK to the table as
          entry 259.  Store K (<8>) into Omega.

          Back at the top of the loop.  We read Pixel 4 into K.  Does OmegaK
          (<8><8>) exist  in the  string table?   No,  so  write  the  code
          associated with Omega (<8>) to output, and add OmegaK to the table as
          entry 260.  Store K (<8>) into Omega.

          Continuing, we get the following results:

               After reading: We write to output: And add table entry:
               Pixel 0
               Pixel 1   <7>  258: <7><7>
               Pixel 2
               Pixel 3   <258>     259: <7><7><8>
               Pixel 4   <8>  260: <8><8>
               Pixel 5   <8>  261: <8><7>
               Pixel 6
               Pixel 7   <258>     262: <7><7><6>
               Pixel 8   <6>  263: <6><6>

2/18/05 4:18 PMUntitled

Page 35 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          WriteCode() also  requires some  explanation.   The  output  code
          stream,  <7><258><8><8><258><6>...  in  our  example,  should  be
          written using as few bits as possible.  When we are just starting
          out, we  can use  9-bit codes, since our new string table entries
          are greater  than 255  but less  than 512.  But when we add table
          entry 512,  we must  switch to 10-bit codes.  Likewise, we switch
          to 11-bit  codes at  1024, and  12-bit codes  at 2048.   We  will
          somewhat arbitrarily limit ourselves to 12-bit codes, so that our
          table can  have at most 4096 entries.  If we push it any farther,
          tables tend to get too large.

          What happens  if we run out of room in our string table?  This is
          where the afore-mentioned Clear code comes in.  As soon as we use
          entry 4094, we write out a (12-bit) Clear code.   (If we wait any
          longer to  write the  Clear code,  the decompressor  might try to
          interpret the  Clear code  as a 13-bit code.)  At this point, the
          compressor re-initializes the string table and starts writing out
          9-bit codes again.

          Note that whenever you write a code and add a table entry, Omega is
          not left  empty.   It contains exactly one character.  Be careful
          not to  lose it  when you  write an end-of-table Clear code.  You
          can either write it out as a 12-bit code before writing the Clear
          code, in  which case  you will  want to  do it right after adding
          table entry  4093, or  after the  clear code  as  a  9-bit  code.
          Decompression gives the same result in either case.

          To make  things a  little simpler  for the  decompressor, we will
          require that  each strip  begins with a Clear code, and ends with
          an EndOfInformation code.

          Every LZW-compressed  strip must  begin on  a byte  boundary.  It
          need not  begin on  a word  boundary.   LZW compression codes are
          stored into  bytes in  high-to-low-order fashion, i.e., FillOrder
          is assumed  to be  1.  The compressed codes are written as bytes,
          not  words,  so  that  the  compressed  data  will  be  identical
          regardless of whether it is an "II" or "MM" file.

          Note that  the LZW string table is a continuously updated history
          of the  strings that  have been encountered in the data.  It thus
          reflects the characteristics of the data, providing a high degree
          of adaptability.

          LZW Decoding

          The procedure for decompression is a little more complicated, but
          still not too bad:

               while ((Code = GetNextCode()) != EoiCode) {
                    if (Code == ClearCode) {
                         InitializeTable();
                         Code = GetNextCode();
                         if (Code == EoiCode)
                              break;
                         WriteString(StringFromCode(Code));
                         OldCode = Code;
                    }  /* end of ClearCode case */

                    else {
                         if (IsInTable(Code)) {

2/18/05 4:18 PMUntitled

Page 36 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



                              WriteString(StringFromCode(Code));
                              AddStringToTable(StringFromCode(OldCode)+
����FirstChar(StringFromCode(Code)));
                              OldCode = Code;
                         } else {
                              OutString = StringFromCode(OldCode) +
���          FirstChar(StringFromCode(OldCode));
                              WriteString(OutString);
                              AddStringToTable(OutString);
                              OldCode = Code;
                         }
                    } /* end of not-ClearCode case */
               } /* end of while loop */

          The function  GetNextCode() retrieves the next code from the LZW-
          coded data.  It must keep track of bit boundaries.  It knows that
          the first code that it gets will be a 9-bit code.  We add a table
          entry each  time we get a code, so GetNextCode() must switch over
          to 10-bit codes as soon as string #511 is stored into the table.

          The function  StringFromCode() gets  the string associated with a
          particular code from the string table.

          The function  AddStringToTable() adds  a  string  to  the  string
          table.   The "+"  sign joining  the two  parts of the argument to
          AddStringToTable indicate string concatenation.

          StringFromCode() looks  up the  string associated  with  a  given
          code.

          WriteString() adds a string to the output stream.

          When SamplesPerPixel Is Greater Than 1

          We  have   so  far   described  the   compression  scheme  as  if
          SamplesPerPixel were  always 1,  as will  be  be  the  case  with
          palette color  and grayscale  images.  But what do we do with RGB
          image data?

          Tests on  our sample  images indicate  that the  LZW  compression
          ratio    is    nearly    identical    regardless    of    whether
          PlanarConfiguration=1 or  PlanarConfiguration=2, for  RGB images.
          So use  whichever configuration  you prefer,  and simply compress
          the bytes in the strip.

          It is  worth cautioning  that compression  ratios on our test RGB
          images were disappointing low: somewhere between 1.1 to 1 and 1.5
          to 1,  depending on the image.  Vendors are urged to do what they
          can to  remove as  much noise  from  their  images  as  possible.
          Preliminary tests  indicate that significantly better compression
          ratios are  possible with  less noisy  images.  Even something as
          simple as  zeroing out one or two least-significant bitplanes may
          be  quite   effective,  with   little  or  no  perceptible  image
          degradation.

          Implementation

          The exact  structure of  the string  table and the method used to
          determine if  a string  is already  in the table are probably the
          most significant  design decisions in the implementation of a LZW

2/18/05 4:18 PMUntitled

Page 37 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          compressor and  decompressor.   Hashing has  been suggested  as a
          useful technique for the compressor.  We have chosen a tree based
          approach, with  good results.   The decompressor is actually more
          straightforward,  as   well  as   faster,  since   no  search  is
          involved - strings can be accessed directly by code value.

          Performance

          Many  people   do  not   realize  that  the  performance  of  any
          compression scheme  depends greatly  on the type of data to which
          it is  applied.   A scheme that works well on one data set may do
          poorly on the next.

          But since  we do  not want  to burden  the world  with  too  many
          compression schemes, an adaptive scheme such as LZW that performs
          quite well  on a wide range of images is very desirable.  LZW may
          not always  give optimal  compression ratios,  but  its  adaptive
          nature and relative simplicity seem to make it a good choice.

          Experiments thus  far indicate  that we  can  expect  compression
          ratios of  between 1.5  and 3.0  to 1  from LZW,  with no loss of
          data, on  continuous tone  grayscale scanned  images.  If we zero
          the least  significant one or two bitplanes of 8-bit data, higher
          ratios can be achieved.  These bitplanes often consist chiefly of
          noise, in  which case  little or no loss in image quality will be
          perceived.   Palette color  images created  in  a  paint  program
          generally compress  much  better  than  continuous  tone  scanned
          images, since paint images tend to be more repetitive.  It is not
          unusual to  achieve compression  ratios of 10 to 1 or better when
          using LZW on palette color paint images.

          By way  of comparison, PackBits, used in TIFF for black and white
          bilevel images, does not do well on color paint images, much less
          continuous tone  grayscale and  color images.  1.2 to 1 seemed to
          be about average for 4-bit images, and 8-bit images are worse.

          It has  been suggested that the CCITT 1D scheme could be used for
          continuous tone  images, by compressing each bitplane separately.
          No doubt  some  compression  could  be  achieved,  but  it  seems
          unlikely that  a scheme  based on a fixed table that is optimized
          for short  black runs  separated by  longer white runs would be a
          very good choice on any of the bitplanes.  It would do quite well
          on the  high-order bitplanes  (but so would a simpler scheme like
          PackBits), and  would do quite poorly on the low-order bitplanes.
          We believe  that the  compression ratios  would generally  not be
          very impressive, and the process would in addition be quite slow.
          Splitting  the  pixels  into  bitplanes  and  putting  them  back
          together is  somewhat expensive,  and the  coding is  also fairly
          slow when implemented in software.

          Another  approach   that  has  been  suggested  uses  uses  a  2D
          differencing step  following by  coding the  differences using  a
          fixed table  of variable-length codes.  This type of scheme works
          quite well  on many  8-bit  grayscale  images,  and  is  probably
          simpler  to  implement  than  LZW.    But  it  has  a  number  of
          disadvantages when  used on  a wide variety of images.  First, it
          is not  adaptive.   This makes  a big difference when compressing
          data such as 8-bit images that have been "sharpened" using one of
          the standard  techniques.  Such images tend to get larger instead
          of smaller  when  compressed.    Another  disadvantage  of  these
          schemes is  that they  do not  do well  with a  wide range of bit

2/18/05 4:18 PMUntitled

Page 38 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          depths.   The built-in  code table  has to  be  optimized  for  a
          particular bit depth in order to be effective.

          Finally,  we   should  mention   "lossy"   compression   schemes.
          Extensive research  has been  done in  the area of lossy, or non-
          information-preserving  image   compression.    These  techniques
          generally yield  much  higher  compression  ratios  than  can  be
          achieved  by   fully-reversible,   information-preserving   image
          compression  techniques   such  as   PackBits  and   LZW.    Some
          disadvantages:     many  of   the   lossy   techniques   are   so
          computationally expensive  that hardware  assists  are  required.
          Others  are  so  complicated  that  most  microcomputer  software
          vendors could  not afford either the expense of implementation or
          the increase  in  application  object  code  size.    Yet  others
          sacrifice enough  image  quality  to  make  them  unsuitable  for
          publishing use.

          In spite  of these  difficulties, we  believe that there will one
          day be  a standardized  lossy compression  scheme for  full color
          images  that  will  be  usable  for  publishing  applications  on
          microcomputers.   An International  Standards Organization group,
          ISO/IEC/JTC1/SC2/WG8, in cooperation with CCITT Study Group VIII,
          is hard at work on a scheme that might be appropriate.  We expect
          that a  future revision of TIFF will incorporate this scheme once
          it is  finalized, if it turns out to satisfy the needs of desktop
          publishers and  others in the microcomputer community.  This will
          augment, not replace, LZW as an approved TIFF compression scheme.
          LZW will  very likely  remain the  scheme of  choice for  Palette
          color images,  and perhaps  4-bit grayscale  images, and may well
          overtake CCITT 1D and PackBits for bilevel images.

          Future LZW Extensions

          Some images  compress better  using LZW  coding if they are first
          subjected to  a process  wherein each  pixel value is replaced by
          the  difference  between  the  pixel  and  the  preceding  pixel.
          Performing this  differencing in two dimensions helps some images
          even more.  However, many images do not compress better with this
          extra preprocessing,  and for a significant number of images, the
          compression ratio is actually worse.  We are therefore not making
          differencing an integral part of the TIFF LZW compression scheme.

          However,  it   is  possible   that  a   "prediction"  stage  like
          differencing may  exist which  is effective over a broad range of
          images.  If such a scheme is found, it may be incorporated in the
          next major TIFF revision.  If so, a new value will be defined for
          the new  "Predictor" TIFF  tag.  Therefore, all TIFF readers that
          read LZW files must pay attention to the Predictor tag.  If it is
          1, which  is the  default case,  LZW  decompression  may  proceed
          safely.   If it  is not  1, and the reader does not recognize the
          specified prediction scheme, the reader should give up.

          Acknowledgements

          The original  LZW reference  has already  been given.  The use of
          ClearCode as a technique to handle overflow was borrowed from the
          compression scheme used by the Graphics Interchange Format (GIF),
          a small-color-paint-image-file  format used  by  CompuServe  that
          also is an adaptation of the LZW technique.  Joff Morgan and Eric
          Robinson of  Aldus were  each instrumental  in their  own way  in

2/18/05 4:18 PMUntitled

Page 39 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          getting LZW off the ground.

          Appendix G: TIFF Classes

          Rationale

          TIFF was  designed to  make  life  easier  for  scanner  vendors,
          desktop publishing  software developers,  and users  of these two
          classes of products, by reducing the proliferation of proprietary
          scanned  image   formats.    It  has  succeeded  far  beyond  our
          expectations in  this respect.   But  we had  expected that  TIFF
          would be of interest to only a dozen or so scanner vendors (there
          weren't any  more than  that in  1985), and  another dozen  or so
          desktop publishing  software vendors.   This  turned out  to be a
          gross underestimate.   The only problem with this sort of success
          is that  TIFF was  designed to  be powerful  and flexible, at the
          expense of  simplicity.   It takes  a fair  amount of  effort  to
          handle all  the options  currently defined  in this specification
          (probably no  application does  a  complete  job),  and  that  is
          currently the  only way  you can be sure that you will be able to
          import any  TIFF image,  since there are so many image-generating
          applications out there now.

          So here  is an attempt to channel some of the flexibility of TIFF
          into more  restrictive paths,  using what  we have learned in the
          past two  years about which options are the most useful.  Such an
          undertaking is  of course filled with fairly arbitrary decisions.
          But the  result is  that writers can more easily write files that
          will be  successfully read by a wide variety of applications, and
          readers can know when they can stop adding TIFF features.

          The price  we pay for TIFF Classes is some loss in the ability to
          adapt.   Once we  establish the requirements for a TIFF Class, we
          can never add new requirements, since old software would not know
          about these  new requirements.  (The best we can do at that point
          is establish new TIFF Classes.  But the problem with that is that
          we could quickly have too many TIFF Classes.)  So we must believe
          that we know what we are doing in establishing these Classes.  If
          we do not, any mistakes will be expensive.

          Overview

          Four TIFF Classes have been defined:

          o    Class B for bilevel (1-bit) images
          o    Class G for grayscale images
          o    Class P for palette color images
          o    Class R for RGB full color images

          To save  time and  space, we will usually say "TIFF B", "TIFF G",
          "TIFF P,"  and "TIFF R."  If we are talking about all four types,
          we may write "TIFF X."

          (Note to  fax people:   if  you are  interested in  a fax  TIFF F
          Class, please  get together  and decide  what should  be in  TIFF
          Class F  files.  Let us know if we can help in any way.  When you
          have decided,  send us  your results,  so that we can include the
          information here.)

2/18/05 4:18 PMUntitled

Page 40 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Core Requirements

          This section  describes requirements  that are common to all TIFF
          Class X images.

          General Requirements

          The following  are required  characteristics of  all TIFF Class X
          files.

          Where there are options, TIFF X writers can do whichever one they
          want, though  we will  often recommend  a particular  choice, but
          TIFF X  readers must  be able  to handle all of them.  Please pay
          close attention  to the  recommendations.  It is possible that at
          some point  in the future, new and even-simpler TIFF classes will
          be defined that include only recommended features.

          You will  need to  read at  least the first three sections of the
          main specification  in order  to fully  understand the  following
          discussion.

          Defaults.  TIFF X writers may, but are not required, to write out
          a field that has a default value, if the default value is the one
          desired.   TIFF X  readers must  be  prepared  to  handle  either
          situation.

          Other fields.   TIFF  X readers  must be  prepared  to  encounter
          fields other  than the  required fields  in TIFF X files.  TIFF X
          writers  are  allowed  to  write  fields  such  as  Make,  Model,
          DateTime, and so on, and TIFF X readers can certainly make use of
          such fields  if they  exist.   TIFF X  readers must not, however,
          refuse to read the file if such optional fields do not exist.

          "MM" and  "II" byte order.  TIFF X readers must be able to handle
          both byte  orders.    TIFF  writers  can  do  whichever  is  most
          convenient  or   efficient.     Images  are   crossing  the   IBM
          PC/Macintosh boundary  (and others  as well)  with a surprisingly
          high frequency.   We could force writers to all use the same byte
          order, but  preliminary evidence  indicates that  this will cause
          problems  when   we  start   seeing  greater-than-8-bit   images.
          Reversing bytes  while scanning could well slow down the scanning
          process enough  to cause  the scanning  mechanism to  stop, which
          tends to create image quality problems.

          Multiple subfiles.   TIFF X readers must be prepared for multiple
          images (i.e.,  subfiles) per  TIFF file,  although they  are  not
          required to do anything with any image after the first one.  TIFF
          X writers  must be  sure to write a long word of 0 after the last
          IFD (this is the standard way of signalling that this IFD was the
          last one) as indicated in the TIFF structure discussion.

          If a  TIFF X  writer writes multiple subfiles, the first one must
          be the  full resolution  image.   Subsequent subimages,  such  as
          reduced resolution  images and  transparency masks, may be in any
          order in  the TIFF  file.   If a reader wants to make use of such
          subimages, it  will have to scan the IFDs before deciding how to
          proceed.

          TIFF X  Editors.   Editors, applications  that modify TIFF files,
          have a few additional requirements.

2/18/05 4:18 PMUntitled

Page 41 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          TIFF editors  must be  especially careful  about subfiles.   If a
          TIFF editor  edits a full-resolution subfile, but does not update
          an accompanying  reduced-resolution subfile,  a reader  that uses
          the reduced-resolution  subfile for  screen display  will display
          the wrong  thing.   So TIFF  editors must  either  create  a  new
          reduced-resolution subfile  when  they  alter  a  full-resolution
          subfile, or  else they  must simply delete any subfiles that they
          aren't prepared to deal with.

          A similar  situation arises with the fields themselves.  A TIFF X
          editor need  only worry  about the  TIFF X  required fields.   In
          particular, it  is unnecessary,  and probably  dangerous, for  an
          editor to  copy fields  that it does not understand.  It may have
          altered the  file in  a way that is incompatible with the unknown
          fields.

          Required Fields

          NewSubfileType.  LONG.  Recommended but not required.

          ImageWidth.   SHORT or  LONG.   (That is, both "SHORT" and "LONG"
          TIFF data  types are  allowed, and  must be  handled properly  by
          readers.   TIFF writers  can use either.)  TIFF X readers are not
          required to  read arbitrarily  large files however.  Some readers
          will give  up if the entire image cannot fit in available memory.
          (In such cases the reader should inform the user of the nature of
          the problem.)   Others  will  probably  not  be  able  to  handle
          ImageWidth greater  than 65535.   Recommendation: use LONG, since
          resolutions seem to keep going up.

          ImageLength.  SHORT or LONG.  Recommendation: use  LONG.

          RowsPerStrip.  SHORT or LONG.  Readers must be able to handle any
          value between  1 and  2**32-1.   However, some readers may try to
          read an  entire strip  into memory  at one  time, so  that if the
          entire image is one strip, the application may run out of memory.
          Recommendation 1:   Set  RowsPerStrip such  that the size of each
          strip is  about 8K  bytes.   Do this  even for uncompressed data,
          since it  is easy  for a  writer and  makes  things  simpler  for
          readers.  (Note:  extremely wide, high-resolution images may have
          rows larger  than 8K  bytes; in this case, RowsPerStrip should be
          1,  and   the  strip  will  just  have  to  be  larger  than  8K.
          Recommendation 2: use LONG.

          StripOffsets.   SHORT or  LONG.  As explained in the main part of
          the  specification,   the  number   of  StripOffsets  depends  on
          RowsPerStrip and  ImageLength.  Recommendation:  always use LONG.
          (LONG must, of course, be used if the file is more than 64K bytes
          in length.)

          StripByteCounts.   SHORT or  LONG.   Many existing TIFF images do
          not contain StripByteCounts, because, in a strict sense, they are
          unnecessary.   It is  possible to  write an efficient TIFF reader
          that does  not need  to know  in advance  the  exact  size  of  a
          compressed strip.   But  it does  make things  considerably  more
          complicated, so  we will require StripByteCounts in TIFF X files.
          Recommendation:   use SHORT,  since strips are not supposed to be
          very large.

          XResolution, YResolution.   RATIONAL.   Note  that the  X  and  Y

2/18/05 4:18 PMUntitled

Page 42 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          resolutions may  be unequal.   A  TIFF X  reader must  be able to
          handle this  case.   TIFF X pixel-editors will typically not care
          about the  resolution,  but  applications  such  as  page  layout
          programs will.

          ResolutionUnit.   SHORT.   TIFF X  readers must  be  prepared  to
          handle all three values for ResolutionUnit.

          TIFF Class B - Bilevel

          Required (in addition to the above core requirements)

          The following fields and values are required for TIFF B files, in
          addition to  the fields  required for  all  TIFF  X  images  (see
          above).

          SamplesPerPixel =  1.   SHORT.   (Since this  is the default, the
          field need  not be  present.   The same  thing  holds  for  other
          required TIFF X fields that have defaults.)

          BitsPerSample = 1.  SHORT.

          Compression = 1, 2 (CCITT 1D), or 32773 (PackBits).  SHORT.  TIFF
          B readers  must handle all three.  Recommendation:  use PackBits.
          It  is  simple,  effective,  fast,  and  has  a  good  worst-case
          behavior.    CCITT  1D  is  definitely  more  effective  in  some
          situations, such as scanning a page of body text, but is tough to
          implement and  test, fairly  slow,  and  has  a  poor  worst-case
          behavior.   Besides, scanning a page of 12 point text is not very
          useful for  publishing applications,  unless the  image  data  is
          turned into  ASCII text  via OCR  software, which  is outside the
          scope of TIFF.

          PhotometricInterpretation = 0 or 1.  SHORT.
          A Sample TIFF B Image

          Offset         Value
          (hex)     Name (mostly hex)

          Header:
          0000 Byte Order     4D4D
          0002 Version   002A
          0004 1st IFD pointer     00000014

          IFD:
          0014 Entry Count    000D
          0016 NewSubfileType 00FE 0004 00000001  00000000
          0022 ImageWidth     0100 0004 00000001  000007D0
          002E ImageLength    0101 0004 00000001  00000BB8
          003A Compression    0103 0003 00000001  8005 0000
          0046 PhotometricInterpretation     0106 0003 00000001  0001 0000
          0052 StripOffsets   0111 0004 000000BC  000000B6
          005E RowsPerStrip   0116 0004 00000001  00000010
          006A StripByteCounts     0117 0003 000000BC  000003A6
          0076 XResolution    011A 0005 00000001  00000696
          0082 YResolution    011B 0005 00000001  0000069E
          008E Software  0131 0002 0000000E  000006A6
          009A DateTime  0132 0002 00000014  000006B6
          00A6 Next IFD pointer    00000000

          Fields pointed to by the tags:

2/18/05 4:18 PMUntitled

Page 43 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          00B6 StripOffsets   Offset0, Offset1, ... Offset187
          03A6 StripByteCounts     Count0, Count1, ... Count187
          0696 XResolution    0000012C 00000001
          069E YResolution    0000012C 00000001
          06A6 Software  "PageMaker 3.0"
          06B6 DateTime  "1988:02:18 13:59:59"

          Image Data:
          00000700  Compressed data for strip 10
          xxxxxxxx  Compressed data for strip 179
          xxxxxxxx  Compressed data for strip 53
          xxxxxxxx  Compressed data for strip 160
          .
          .
          .

          End of example

          Comments on the TIFF B example

          1.   The IFD  in our example starts at position hex 14.  It could
          have been  anywhere in  the file  as long as the position is even
          and greater  than or equal to 8, since the TIFF header is 8 bytes
          long and must be the first thing in a TIFF file.

          2.   With 16 rows per strip, we have 188 strips in all.

          3.   The example  uses a  number  of  optional  fields,  such  as
          DateTime.   TIFF X  readers must safely skip over these fields if
          they do not want to use the information.  And TIFF X readers must
          not require that such fields be present.

          4.   Just for  fun, our example has highly fragmented image data;
          the strips  of our  image are  not even in sequential order.  The
          point is  that strip  offsets must  not be ignored.  Never assume
          that strip  N+1 follows  strip N.    Incidentally,  there  is  no
          requirement that  the image  data follows  the  IFD  information.
          Just the follow the pointers, whether they be IFD pointers, field
          pointers, or Strip Offsets.

          TIFF Class G - Grayscale

          Required (in addition to the above core requirements)

          SamplesPerPixel = 1.  SHORT.

          BitsPerSample =  4,  8.    SHORT.    There  seems  to  be  little
          justification for  working with grayscale images shallower than 4
          bits, and 5-bit , 6-bit, and 7-bit images can easily be stored as
          8-bit images, as long as you can compress the "unused" bit planes
          without penalty.  And we can do just that with LZW (Compression =
          5.)

          Compression = 1 or 5 (LZW).  SHORT.  Recommendation: use 5, since
          LZW decompression is turning out to be quite fast.

          PhotometricInterpretation = 0 or 1.  SHORT.   Recommendation: use
          1, due  to popular  user interfaces  for adjusting brightness and
          contrast.

2/18/05 4:18 PMUntitled

Page 44 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          TIFF Class P - Palette Color

          Required (in addition to the above core requirements)

          SamplesPerPixel = 1.  SHORT.  We use each pixel value as an index
          into all three color tables in ColorMap.

          BitsPerSample =  1,2,3,4,5,6,7, or 8.  SHORT.  1,2,3,4, and 8 are
          probably the  most common,  but as long as we are doing that, the
          rest come pretty much for free.

          Compression = 1 or 5.  SHORT.

          PhotometricInterpretation = 3 (Palette Color).  SHORT.

          ColorMap.  SHORT.

          Note that  bilevel and  grayscale images  can be  represented  as
          special cases  of palette  color images.  As soon as enough major
          applications support  palette color  images, we may want to start
          getting rid  of  distinctions  between  bilevel,  grayscale,  and
          palette color images.

          TIFF Class R - RGB Full Color

          Required (in addition to the above Core Requirements)

          SamplesPerPixel = 3.  SHORT.  One sample each for Red, Green, and
          Blue.

          BitsPerSample =  8,8,8.   SHORT.  Shallower samples can easily be
          stored as 8-bit samples with no penalty if the data is compressed
          with LZW.  And evidence to date indicates that images deeper than
          8 bits  per sample are not worth the extra work, even in the most
          demanding publishing applications.

          PlanarConfiguration = 1 or 2.  SHORT.  Recommendation:  use 1.

          Compression = 1 or 5.  SHORT.

          PhotometricInterpretation = 2 (RGB).  SHORT.

          Recommended

          Recommended for  TIFF Class  R, but not required, are the new (as
          of Revision 5.0) colorimetric information tags.  See Appendix H.

          Conformance and User Interface

          Applications that  write valid  TIFF X files should include "TIFF
          B" and/or  "TIFF G"  and/or "TIFF  P" and/or  "TIFF R"  and/or in
          their product  spec sheets, if they can write the respective TIFF
          Class X  files.   If your  application writes  all four  of these
          types, you  may wish to write it as "TIFF B,G,P,R."  Of course, a
          term like  "TIFF B,"  while fine  for  communicating  with  other
          vendors, will  not convey much information to a typical user.  In
          this case,  a  phrase  such  as  "Standard  TIFF  Black-and-White

2/18/05 4:18 PMUntitled

Page 45 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Scanned Images" might be better.

          The same  terminology guidelines  apply to applications that read
          TIFF Class X files.

          If your  application reads more kinds of files than it writes, or
          vice versa,  it would  be a  good idea  to make that clear to the
          buyer.   For example, if your application reads TIFF B and TIFF G

          files, but writes only TIFF G files, you should write it that way
          in the spec sheet.

          Appendix H: Image Colorimetry Information

          Chris Sears
          210 Lake Street
          San Francisco, CA 94118

          June 4, 1988
          Revised August 8, 1988

          I. Introduction

          Our goal is to accurately reproduce a color image using different
          devices.   Accuracy requires  techniques  of  measurement  and  a
          standard  of   comparison.     Different  devices   imply  device
          independence.   Colorimetry provides the framework to solve these
          problems.  When an image has a complete colorimetric description,
          in principle  it  can  be  reproduced  identically  on  different
          monitors and using different media, such as offset lithography.

          The colorimetry  data is  specified when  the image is created or
          changed.   A scanned image has colorimetry data derived from  the
          filters and  light sources  of the  scanner and a synthetic image
          has colorimetry  data corresponding to the monitor used to create
          it or  the monitor model of the rendering environment.  This data
          is used  to map  an input  image to  the markings  or colors of a
          particular output device.

          Section II  describes various  standards organizations  and their
          work in color.
          Section III describes our motivation for seeking these tags.
          Section IV describes our goals of reproduction.
          Sections V, VI and VII introduce the colorimetry tags.
          Section VIII specifies the tags themselves.
          Section IX describes the defaults.
          Section X discusses the limitations and some of the other issues.
          Section XI provides a few references.

          II. Related Standards

          TIFF is  a general  standard for describing image data.  It would
          be foolish  for us  to change  TIFF in  a way  that did not match
          existing industry  and international  standards.   Therefore,  we
          have taken  pains to  note in the discussion below the efforts of
          various standards organizations and select defaults from the work
          of these organizations.

          CIE  (Commission Internationale de lEclairage)  The basis of the

2/18/05 4:18 PMUntitled

Page 46 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          colorimetry information  is the  CIE 1931  Standard Observer [3].
          While other color models could be supported [1] [4], CIE 1931 XYZ
          is the  international standard  accepted  across  industries  for
          specifying  color   and  CIE  xyY  is  the  chromaticity  diagram
          associated with CIE 1931 XYZ tristimulus values.

          NTSC (National Television  System Committee)  NTSC is of interest
          primarily  for   historical  reasons  and  its  use  in  encoding
          television data.   Manufacturing  standards for monitors have for
          some time  drifted significantly  from the  1953 NTSC colorimetry
          specification.

          SMPTE     (Society of  Motion Picture  and Television  Engineers)
          Most of  the work  by NTSC  has been  largely subsumed  by SMPTE.
          This organization  has a  set of  standards  called  "Recommended
          Practices" that  apply to  various technical  aspects of film and
          television production [5] [6].

          ISO  (International  Standards  Organization)    ISO  has  become
          involved in  color standards  through work on a color addendum to
          "Office Document Architecture (ODA) and Interchange Format" [7].

          ANSI (American  National   Standards  Institute)    ANSI  is  the
          American representative to ISO .

          III. Motivation

          Our motivation  for defining  these tags  stems from our research
          and  development  in  color  separation  technology.    With  the
          information described here and the RGB pixel data, we have all of
          the  information  necessary  for  generating  high-quality  color
          separations.  We could supply the colorimetry information outside
          of the  image  file.    But  since  TIFF  provides  a  convenient
          mechanism for  bundling all  of the  relevant  information  in  a
          single place,  tags are  defined to  describe this information in
          color TIFF files.

          A color  image rendered  with incorrect  colorimetry  information
          looks different  from the original.  One of our early test images
          has an artifact in it where the image was scanned with one set of
          primaries and  color ramps  were  overlaid  on  top  of  it  with
          different primaries.  The blue ramp looked purple when we printed
          it. Using incorrect gamma tables or white points can also lead to
          distorted images.  The best way to avoid these kinds of errors is
          to allow  the creator  of an  image  to  supply  the  colorimetry
          information along with the RGB values [1] [2].

          The purpose  of the  colorimetry data  is to  allow a  projective
          transformation from the primaries and white point of the image to
          the primaries  and white  point of  the rendering  media.   Gamma
          reflects the non-linear transfer gradient of real media.

          IV. Colorimetric Color Reproduction

          Earlier we  said that given the proper colorimetric data an image
          could be  rendered identically  using  two  different  calibrated
          devices.   By identical,  we mean  colorimetric reproduction [9].
          Specifically, the  chromaticities  match  and  the  luminance  is
          scaled to correspond to the luminance range of the output device.
          Because of this, we only need the chromaticity coordinates of the

2/18/05 4:18 PMUntitled

Page 47 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          white point  and primaries.   The absolute luminance is arbitrary
          and unnecessary.

          V. White Point

          In TIFF 4.0, the white point was specified as D65.  This appendix
          allocates a  separate tag  for describing the white point and D65
          is the logical default since it is the SMPTE standard [6].

          The white  point is  defined  colorimetrically  in  the  CIE  xyY
          chromaticity diagram.   While  it is  rare for monitors to differ
          from D65,  scanned images  often  have  different  white  points.
          Rendered images  can have  arbitrary white  points.   The graphic
          arts use D50 as the standard viewing light source [8].

          VI. Primary Chromaticities

          In TIFF  4.0, the  primary color  chromaticities matched the NTSC
          specification.  With the wide variety of color scanners, monitors
          and renderers,  TIFF needs  a mechanism for accurately describing
          the chromaticities  of the  primary colors.   We use SMPTE as the
          default chromaticity  since conventional  monitors are  closer to
          SMPTE and  some monitors  (Conrac 6545)  are manufactured  to the
          SMPTE specifications.   We  dont use the NTSC chromaticities and
          white point  because present day monitors dont use them and must
          be "matrixed" to approximate them.

          As an  example, the primary color chromaticities used by the Sony
          Trinatron differ  from those  recommended by  SMPTE.  In general,
          since  real  monitors  vary  from  the  industry  standards,  the
          chromaticities of  primaries are described in the CIE xyY system.
          This  allows   a  reproduction   system  to  compensate  for  the
          differences.

          VII. Color Response Curves

          This tag  defines three  color response curves, one each for red,
          green, and blue color information.  The width of each entry is 16
          bits, as  implied by  the type  SHORT.   The minimum intensity is
          represented by 0 and the maximum by 65535.  For example, black is
          represented by  0,0,0 and  white by  65535, 65535,  65535.    The
          length of  each curve is 2**BitsPerSample.  A ColorResponseCurves
          field for RGB data where each of the samples is 8 bits deep would
          have 3*256  entries.   The 256  red  entries  would  come  first,
          followed by 256 green entries, followed by 256 blue entries.

          The purpose  of the  ColorResponseCurves field  is to  act  as  a
          lookup table  mapping sample values to specific intensity values,
          so that  an image  created on  one system  can  be  displayed  on
          another   with   minimal   loss   of   color   fidelity.      The
          ColorResponseCurves field thus describes the "gamma" of an image,
          so that  a TIFF  reader on another system can compensate for both
          the image gamma and the gamma of the reading system.

          Gamma is  a term that relates to the typically nonlinear response
          of most  display devices,  including monitors.   In  most display
          systems, the  voltage applied to the CRT is directly proportional
          to the  value of  the red,  green, or  blue sample.  However, the
          resulting luminance  emitted by  the  phosphor  is  not  directly

2/18/05 4:18 PMUntitled

Page 48 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          proportional to  the voltage.   This relationship is approximated
          in most displays by

               luminance = voltage ** gamma

          The NTSC  standard gamma  of 2.2 adequately describes most common
          video systems.  The standard  gamma of  2.2 implies a dim viewing
          surround.   (We know of no SMPTE recommended practice for gamma.)
          The following example uses an 8 bit sample with value of 127.

               voltage = 127 / 255 = 0.4980
               luminance = 0.4980 ** 2.2 = 0.2157

          In the  examples below,  we only  consider a  single primary  and
          therefore only a single curve.  The same analysis applies to each
          of the  red, green,  and blue  primaries and  curves.   Also, and
          without loss  of generality,  we assume that there is no hardware
          color map, so that we must alter the pixel values themselves.  If
          there is  a color  map, the  manipulations can be done on the map
          instead of on the pixels.

          If no  ColorResponseCurves field  exists in  a color  image,  the
          reader should  assume a  gamma of  2.2 for each of the primaries.
          This default curve can be generated with the following C code:

               ValuesPerSample = 1 << BitsPerSample;
               for (curve[0] = 0, i = 1; i < ValuesPerSample; i++)
                    curve[i] =  floor (pow  (i /  (ValuesPerSample -  1.0),
          2.2) * 65535.0 + .5);

          The displaying  or rendering  application can know its own gamma,
          which we  will call  the "destination  gamma."   (An uncalibrated
          system can usually assume that its gamma is 2.2 without going too
          far  wrong.)     Using   this  information  the  application  can
          compensate for the gamma of the image, as we shall see below.

          If  the  source  and  destination  systems  are  both  adequately
          described  by   a  gamma  of  2.2,  the  writer  would  omit  the
          ColorResponseCurves field,  and the  reader can  simply read  the
          image directly into the frame buffer.  If a writer writes out the
          ColorResponseCurves field,  then a  reader must  assume that  the
          gammas  differ.    A  reader  must  then  perform  the  following
          computation on each sample in the image:

               NewSampleValue  =   floor  (pow   (curve[OldSampleValue]   /
          65535.0, 1.0 / DestinationGamma) *
                 (ValuesPerSample - 1.0) + .5);

          Of course,  if the "gamma" of the destination system is not well-
          approximated with  an exponential  function, an  arbitrary  table
          lookup may  be used  in place  of raising  the  value  to  1.0  /
          DestinationGamma.

          Leave out  ColorResponseCurves if  using the default gamma.  This
          saves about  1.5K in  the  most  common  case,  and,  after  all,
          omission is the better part of compression.

          Do not  use this  field to  store frame  buffer color  maps.  Use
          instead   the    ColorMap   field.       Note,    however,   that
          ColorResponseCurves may  be used  to refine  the information in a
          ColorMap if desired.

2/18/05 4:18 PMUntitled

Page 49 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          The above  examples assume  that a  single parameter gamma system
          adequately approximates the response characteristics of the image
          source and  destination systems.   This will usually be true, but
          our use  of a table instead of a single gamma parameter gives the
          flexibility  to  describe  more  complex  relationships,  without
          requiring additional computation or complexity.

          VIII. New Tags and Changes
          The following tags should be placed in the "Basic Fields" section
          of
          the TIFF specification:

          White Point
          Tag  = 318 (13E)
          Type = RATIONAL
          N    = 2

          The white  point of the image.  Note that this value is described
          using  the  1931  CIE  xyY  chromaticity  diagram  and  only  the
          chromaticity is  specified.  The luminance component is arbitrary
          and not  specified.   This can correspond to the white point of a
          monitor that  the image  was painted  on,  the  filter  set/light
          source combination  of a  scanner, or  to the  white point of the
          illumination model of a rendering package.

          Default is the SMPTE white point, D65:  x = 0.313, y = 0.329.

          The ordering is x, y.

          PrimaryChromaticities
          Tag  = 319 (13F)
          Type = RATIONAL
          N    = 6

          The primary  color chromaticities.   Note  that these  values are
          described using  the 1931  CIE xyY  chromaticity diagram and only
          the chromaticities  are  specified.    For  paint  images,  these
          represent the  chromaticities of  the  monitor  and  for  scanned
          images  they   are  derived  from  the  filter  set/light  source
          combination of a scanner.

          Default is the SMPTE primary color chromaticities:

               Red: x = 0.635 y = 0.340
               Green:    x = 0.305 y = 0.595
               Blue:     x = 0.155 y = 0.070

          The ordering is red x, red y, green x, green y, blue x, blue y.

          Color Response Curves

          Default for  ColorResponseCurves represents  curves corresponding
          to the NTSC standard gamma of 2.2.

          IX. Defaults

          The defaults  used by  TIFF reflect industry standards.  Both the
          WhitePoint and  PrimaryChromaticities tags have defaults that are
          promoted  by   SMPTE  .     In  addition,  the  default  for  the

2/18/05 4:18 PMUntitled

Page 50 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          ColorResponseCurves tag matches the NTSC specification of a gamma
          of 2.2.

          The purpose  of these  defaults is to allow reasonable results in
          the absence  of  accurate  colorimetry  data.    An  uncalibrated
          scanner or  paint system  produces an  image  that  be  displayed
          identically, though  probably incorrectly  on two  different  but
          calibrated systems.   This is better then the uncertain situation
          where the  image might  be rendered  differently on two different
          but calibrated systems.

          X. Limitations and Issues

          This section  discusses several  of the  limitations  and  issues
          involved in colorimetric reproduction.

          Scope of Usefulness

          For many  purposes the  data recommended  here is unnecessary and
          can be omitted.  For presentation graphics where there are only a
          few colors,  being able  to tell  red from green is probably good
          enough.   In this  case the  tags can  be ignored and there is no
          overhead.   In more  demanding color  reproduction  environments,
          this data  allows images to be described device independently and
          at small cost.

          User Burdens

          The data we recommend isnt a user burden; it is really a systems
          issue.   It allows  a systems  solution but  doesnt require user
          intercession.   Calibration however  is a  separate issue.  It is
          likely to involve the user.

          Resolution Versus Fidelity

          Some manufacturers  supply greater than 24 bits of resolution for
          color specification.   The  purpose of  this is  either to  avoid
          artifacts such  as contouring  in the shadows or in some cases to
          be more  specific or  device independent  about the  color.  Both
          reasons can  be misguided.   Other, less expensive techniques can
          be used  to prevent artifacts, such as deeper color maps.  As for
          accuracy, fidelity is more important than precision.

          Colorimetric Color Reproduction

          There are other choices for objectives of color reproduction [9].
          Spectral color  reproduction is a stronger condition and most are
          weaker, such  as preferred  color  reproduction.    While  device
          independent spectral  color reproduction  is  impossible,  device
          independent  colorimetric  reproduction  is  possible,  within  a
          tolerance and within the limits of the gamuts of the devices.  By
          choosing a  strong criteria  we allow the important objectives of
          weaker criteria, such as preferred color reproduction, to be part
          of design packages.

          Metamerism

          If two  patches of  color  are  identical  under  one  light  and
          different under  another, they  are said  to be  metameric pairs.
          Colorimetric  color  reproduction  is  a  weaker  condition  than
          spectral color reproduction and hence allows metamerism problems.

2/18/05 4:18 PMUntitled

Page 51 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          By standardizing  the viewing  conditions we  can largely finesse
          the metamerism  problem for  print.   Because television is self-
          luminous and doesnt use spectral absorption, metamerism isnt so
          much a problem.

          Color Models - xyY Versus Luv, etc.

          We choose  xyY over  Luv [1]  because XYZ  is  the  international
          standard for  color specification  and xyY  is  the  chromaticity
          diagram associated  with XYZ.   Luv is meant for color difference
          measurement.

          Ambient Environment And Viewing Surrounds

          The viewing environment affects how the eye perceives color.  The
          eye adapts  to a  dark room  and it adapts to a colored surround.
          While  these   problems  can   be  compensated   for  within  the
          colorimetric framework  [4], it is much better to finesse them by
          standardizing.   The design environment should match the intended
          viewing environment.   Specifically it should not be a pitch dark
          room and,  on average,  it should  be of  a neutral  color.   For
          print, ANSI recommends a Munsell N-8 surface [8].

          XI. References

          In particular,  we would  like to mention the work of Stuart Ring
          of the  Copy Products  Division of the Eastman Kodak Company.  He
          and  his  colleagues  are  promoting  a  color  data  interchange
          paradigm.   They are  working closely  with the  ISO 8613 Working
          Group [7].

          [1]  Color Data  Interchange Paradigm,  Eastman Kodak, Rochester,
          New York, 7 December 1987.

          [2]  Color  Reproduction   and  Illumination  Models,  Roy  Hall,
          International Summer  Institute:   State of  the Art  in Computer
          Graphics, 1986.

          [3]  CIE   Colorimetry:    Official   Recommendations    of   the
          International Commission on Illumination, Publication 15-2, 1986.

          [4]  Color Science:  Concepts and  Methods, Quantitative Data and
          Formulae, Gunter  Wyszecki, W.S.  Stiles, John  Wiley  and  Sons,
          Inc., New York, New York, 1982.

          [5]  Color Monitor  Colorimetry, SMPTE  Recommended  Practice  RP
          145-1987.

          [6]  Color Temperature  for  Color  Television  Studio  Monitors,
          SMPTE Recommended Practice RP 37.

          [7]  Office   Document   Architecture   (ODA)   and   Interchange
          Format - Addendum on Colour, ISO 8613 Working Draft.

          [8]  ANSI Standard PH 2.30-1985.

          [9]  The Reproduction  of Colour  in  Photography,  Printing  and
          Television, R.  W. G.  Hunt, Fountain  Press, Tolworth,  England,
          1987.

          [10] Raster  Graphics   Handbook,  The  Conrac  Corporation,  Van

2/18/05 4:18 PMUntitled

Page 52 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Nostrand Reinhold  Company, New  York,  New  York,  1985.    Good
          description of gamma.

          Appendix I:  Horizontal Differencing Predictor

          This appendix,  written after  the release of Revision 5.0 of the
          TIFF specification,  is still  in draft  form.   Please send  any
          comments to the Aldus Developers Desk.

          Revision 5.0  of the  TIFF specification defined a new tag called
          "Predictor"  that  describes  techniques  that  may  be  used  in
          conjuction with  TIFF compression  schemes.    We  now  define  a
          Predictor that  greatly  improves  compression  ratios  for  some
          images.

          The horizontal  differencing predictor  is assigned the tag value
          Predictor = 2:

          Predictor
          Tag  = 317 (13D)
          Type = SHORT
          N    = 1

          A predictor  a mathematical operator that is applied to the image
          data before  the encoding  scheme is  applied.   Currently (as of
          revision 5.0)  this tag  is used  only with  LZW  (Compression=5)
          encoding, since  LZW is  probably the  only TIFF  encoding scheme
          that benefits  significantly from a predictor step.  See Appendix
          F.

          1 = No prediction scheme used before coding.
          2 = Horizontal differencing. See Appendix I.

          Default is 1.

          The algorithm

          The idea  is to  make use  of the  fact that many continuous tone
          images rarely  vary much  in pixel  value from  one pixel  to the
          next.   In such  images,  if  we  replace  the  pixel  values  by
          differences between  consecutive pixels,  many of the differences
          should be  0, plus  or minus  1, and  so on.   This  reduces  the
          apparent information  content, and  thus allows LZW to encode the
          data more compactly.

          Assuming 8-bit  grayscale  pixels  for  the  moment,  a  basic  C
          implementation might look something like this:

               char image[ ][ ];
               int  row, col;

               /* take horizontal differences:
                */
               for (row = 0; row < nrows; row++)
                    for (col = ncols - 1; col >= 1; col--)
                         image[row][col] -= image[row][col-1];

          If we  don't have 8-bit samples, we need to work a little harder,

2/18/05 4:18 PMUntitled

Page 53 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          so that  we can make better use of the architecture of most CPUs.
          Suppose we  have 4-bit  samples, packed  two to a byte, in normal
          TIFF uncompressed  (i.e., Compression=1)  fashion.   In order  to
          find differences,  we want to first expand each 4-bit sample into
          an 8-bit  byte, so  that we  have one  sample per byte, low-order
          justified.   We then  perform the  above horizontal differencing.
          Once the  differencing has  been completed, we then repack the 4-
          bit differences  two to  a  byte,  in  normal  TIFF  uncompressed
          fashion.

          If the  samples are  greater than  8  bits  deep,  expanding  the
          samples into  16-bit words  instead of 8-bit bytes seems like the
          best way to perform the subtraction on most computers.

          Note that we have not lost any data up to this point, nor will we
          lose any  data later  on.   It  might  at  first  seem  that  our
          differencing might  turn 8-bit samples into 9-bit differences, 4-
          bit samples  into 5-bit differences, and so on.  But it turns out
          that we  can completely  ignore the  "overflow"  bits  caused  by
          subtracting a  larger number  from a  smaller  number  and  still
          reverse the  process  without  error.    Normal  twos  complement
          arithmetic does just what we want.  Try an example by hand if you
          need more convincing.

          Up  to  this  point  we  have  implicitly  assumed  that  we  are
          compressing  bilevel   or  grayscale   images.     An  additional
          consideration arises in the case of color images.

          If PlanarConfiguration  is 2,  there is no problem.  Differencing
          proceeds the same way as it would for grayscale data.

          If  PlanarConfiguration  is  1,  however,  things  get  a  little
          trickier.   If  we  didnt  do  anything  special,  we  would  be
          subtracting red  sample values  from green  sample values,  green
          sample values  from blue  sample values,  and blue  sample values
          from red sample values, which would not give the LZW coding stage
          much redundancy  to work  with.   So we  will do  our  horizontal
          differences with  an offset  of SamplesPerPixel  (3, in  the  RGB
          case).  In other words, we will subtract red from red, green from
          green, and  blue from blue.  The LZW coding stage is identical to
          the SamplesPerPixel=1 case.  We require that BitsPerSample be the
          same for all 3 samples.

          Results and guidelines

          LZW without  differencing works  well  for  1-bit  images,  4-bit
          grayscale images, and synthetic color images.  But natural 24-bit
          color images  and some 8-bit grayscale images do much better with
          differencing.  For example, our 24-bit natural test images hardly
          compressed at  all using  "plain" LZW:  the  average  compression
          ratio was  1.04  to  1.    The  average  compression  ratio  with
          horizontal differencing  was 1.40  to 1.  (A compression ratio of
          1.40 to 1 means that if the uncompressed image is 1.40MB in size,
          the compressed version is 1MB in size.)

          Although  the   combination  of   LZW  coding   with   horizontal
          differencing does  not result  in any  loss of  data, it  may  be
          worthwhile in  some situations  to give  up some  information  by
          removing as  much noise  as possible  from the  image data before
          doing the  differencing, especially  with  8-bit  samples.    The
          simplest way  to get  rid of noise is to mask off one or two low-

2/18/05 4:18 PMUntitled

Page 54 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          order bits  of each 8-bit sample.  On our 24-bit test images, LZW
          with horizontal differencing yielded an average compression ratio
          of 1.4 to 1.  When the low-order bit was masked from each sample,
          the compression  ratio climbed to 1.8 to 1; the compression ratio
          was 2.4  to 1  when masking  two bits,  and 3.4 to 1 when masking
          three bits.   Of  course, the  more you  mask, the  more you risk
          losing useful information along with the noise.  We encourage you
          to experiment  to find  the best compromise for your device.  For
          some applications it may be useful to let the user make the final
          decision.

          Interestingly, most  of our RGB images compressed slightly better
          using PlanarConfiguration=1.   One  might think  that compressing
          the  red,   green,  and   blue   difference   planes   separately
          (PlanarConfiguration=2) might  give  better  compression  results
          than  mixing   the  differences   together   before   compressing
          (PlanarConfiguration=1), but this does not appear to be the case.

          Incidentally,  we  tried  taking  both  horizontal  and  vertical
          differences,  but   the  extra   complexity  of   two-dimensional
          differencing did  not appear  to pay  off for  most of  our  test
          images.  About one third of the images compressed slightly better
          with two-dimensional  differencing, about  one  third  compressed
          slightly worse, and the rest were about the same.

          Appendix J:  Palette Color

          This appendix,  written after  the release of Revision 5.0 of the
          TIFF specification,  is still  in draft  form.   Please send  any
          comments to the Aldus Developers Desk.

          Revision  5.0   of  the   TIFF  specification   defined   a   new
          PhotometricInterpretation value  called "palette color."  We have
          been wondering  lately if this additional complexity is worth the
          implementation expense.   If  not, let's  drop it before too many
          people start creating palette color images.

          The Proposal

          Instead of a separate palette color image type, there seems to be
          no compelling reason why palette (mapped) color images should not
          be stored as "full color" (usually 24-bit) RGB images.

          Objections

          The most  obvious objection is the amount of space required.  But
          if you  care about how much space the image takes up on disk, you
          should use  LZW compression,  which is  ideally  suited  to  most
          palette color  images.   (LZW compresses  most paint-type palette
          color images  5:1 or  more.)   And if you use LZW compression, it
          turns out  that palette  color images stored as full color images
          compress to  almost exactly the same size as palette color images
          stored as  palette color  images.  That is, with LZW compression,
          there is  no penalty  for storing  palette color  images as  full
          color RGB  images.   The resulting  file may  be  a  few  percent
          larger, but  it will not be three times as large.  See Appendix F
          for more information on how LZW works.

2/18/05 4:18 PMUntitled

Page 55 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Another objection  might be  that an  application might  want  to
          process the  image differently  if it is "really" a palette color
          image. But  we can easily add auxiliary information that can help
          a TIFF  reader to quickly categorize color images if it wants to.
          See the "New tags" section below.

          Benefits

          It may  be obvious,  but it  is probably  worth discussing why we
          want  to   abolish   palette   color   images   as   a   distinct
          classification.

          The main  problem is  that palette color as a separate type makes
          life more  hazardous and  confusing for  users.    The  confusion
          factor is  aggravated because  users already  have to be somewhat
          aware of  distinctions  between  bilevel,  grayscale,  and  color
          images.   Having two  main types of color images is hard for many
          users to  grasp, and  it is probably not possible to totally hide
          this complexity  from the user in certain situations.  The hazard
          level goes  up because some applications may accept palette color
          but not  full color  images, or  full color but not palette color
          images, or may accept 8-bit palette color images but not 4-bit or
          3-bit palette color images.

          The second  problem is  that writing and maintaining code to deal
          with an  additional image  type is  somewhat expensive  for  TIFF
          readers.  The cost of supporting palette color images will depend
          on the  application, but  we believe  that, in  general, the cost
          will be  substantial.   It seems  to make  more sense  to put the
          burden on  TIFF writers to convert palette color images into full
          color image  form than  to make TIFF readers handle an additional
          color image  type, since there are more TIFF readers than writers
          at this point.

          New tags

          Here are  some proposed  new tags that can help to classify color
          images, and  make up  for not  having a  separate  palette  color
          class.  They are not required for TIFF Class R , but are strongly
          recommended for  color TIFF  images created by palette-type color
          paint programs.

          ColorImageType
          Tag  = 318 (13E)
          Type = SHORT
          N    = 1

          Gives TIFF  color image  readers a  better idea  of what  kind of
          color image it is.  There will be borderline cases.

          1 = Continuous tone, natural image.
          2 =  Synthetic image, using a greatly restricted range of colors.
          Such images  are produced  by most  color paint  programs.    See
          ColorList for a list of colors used in this image.

          Default is 1.

          ColorList
          Tag  = 319 (13F)

2/18/05 4:18 PMUntitled

Page 56 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



          Type = BYTE or SHORT
          N    = the  number of  colors that  are used in this image, times
          SamplesPerPixel

          A list  of colors that are used in this image.  Use of this field
          is only  practical for  images containing  a  greatly  restricted
          (usually  less   than  or   equal  to   256)  range   of  colors.
          ColorImageType should be 2.  See ColorImageType.

          The list  is organized  as an array of RGB triplets, with no pad.
          The RGB  triplets are  not guaranteed  to be  in  any  particular
          order.   Note that the red, green, and blue components can either
          be a  BYTE or  a SHORT  in length.  BYTE should be sufficient for
          most applications.

          No default.

2/18/05 4:18 PMUntitled

Page 57 of 57http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/TIFF-5.txt



���LZW and GIF explained
���   Steve Blackstock

I hope this little document will help enlighten those of you out there
who   want to   know   more  about the   Lempel-Ziv  Welch compression
algorithm,  and, specifically,   the  implementation that  GIF   uses.
Before we start, here's a little terminology, for the purposes of this
document:

      "character"  a fundamental data element. In normal text files,
��   this is just a single byte. In raster images, which
��   is what we're interested in, it's an index that
��   specifies the color of a given pixel. I'll refer to
��   an arbitray character as "K".

      "charstream" a stream of characters, as in a data file.

      "string"  a number of continuous characters, anywhere from one to
��very many characters in length. I can specify an
��arbitrary string as "[...]K".

      "prefix"  almost the same as a string, but with the implication
��that a prefix immediately precedes a character, and a
��prefix can have a length of zero. So, a prefix and a
��character make up a string. I will refer to an
��arbitrary prefix as "[...]".

      "root"    a single-character string. For most purposes, this is a
��character, but we may occasionally make a distinction.
��It is [...]K, where [...] is empty.

      "code"    a number, specified by a known number of bits, which
�        maps to a string.

      "codestream"  the output stream of codes, as in the "raster data".

      "entry"   a code and its string.

      "string table" a list of entries; usually, but not necessarily,
��     unique.

LZW is a way of compressing data that takes advantage of repetition of
strings in the data. Since raster data usually contains  a lot of this
repetition,  LZW is a good  way  of compressing and decompressing  it.
For the moment, lets consider  normal LZW encoding and decoding. GIF's
variation on the concept is just an extension from there.

LZW manipulates three  objects in both  compression and decompression:
the charstream, the codestream, and  the string table. In compression,
the  charstream is the  input and  the   codestream is the output.  In
decompression,  the codestream is the input  and the charstream is the
output.  The string  table  is  a  product  of both    compression and
decompression, but is never passed from one to the other.

The first thing  we do in LZW compression  is   initialize our  string
table.  To do this, we need to choose a code size (how many  bits) and
know how many  values our characters  can possibly take. Let's say our
code size is 12 bits, meaning we can store 0->FFF,  or 4096 entries in
our  string table.  Lets also  say that we  have 32 possible different
characters. (This corresponds to, say, a picture in which there are 32

2/18/05 4:16 PMUntitled

Page 1 of 5http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF-comp.txt



different colors possible for each pixel.) To initialize the table, we
set code#0 to  character#0, code #1 to character#1,  and  so on, until
code#31 to character#31. Actually,  we  are specifying that  each code
from 0  to 31 maps to a  root. There  will be  no  more entries in the
table that have this property.

Now we start compressing data. Let's first define something called the
"current prefix". It's  just  a prefix that  we'll store things in and
compare  things to now  and then. I   will  refer  to it  as  "[.c.]".
Initially, the current prefix has nothing  in  it. Let's also define a
"current string",   which  will be the current   prefix  plus the next
character in the  charstream. I will refer to  the  current string  as
"[.c.]K", where K is some character. OK, look  at the  first character
in the charstream. Call  it P. Make  [.c.]P the  current  string.  (At
this point, of course, it's just the root  P.) Now search  through the
string table to see if [.c.]P appears in it.  Of  course, it does now,
because our string table is initialized to have all roots. So we don't
do anything.  Now  make [.c.]P the   current prefix. Look at the  next
character in the charstream. Call it  Q. Add it  to the current prefix
to form [.c.]Q,  the current string.   Now search  through  the string
table  to see if  [.c.]Q  appears in it.  In this case, of course,  it
doesn't. Aha! Now we get to do something.  Add [.c.]Q (which  is PQ in
this case)  to the string  table for code#32, and  output the code for
[.c.] to the codestream. Now start over again  with the current prefix
being just the root P. Keep adding characters to [.c.] to form [.c.]K,
until you can't find [.c.]K in the string table. Then  output the code
for [.c.]  and add  [.c.]K  to the string table.  In pseudo-code,  the
algorithm goes something like this:

     [1] Initialize string table;
     [2] [.c.] <- empty;
     [3] K <- next character in charstream;
     [4] Is [.c.]K in string table?
      (yes: [.c.] <- [.c.]K;
            go to [3];
      )
      (no: add [.c.]K to the string table;
           output the code for [.c.] to the codestream;
           [.c.] <- K;
           go to [3];
      )

It's as simple as that! Of course, when you get to step  [3] and there
aren't  any more characters left,  you just output  the code for [.c.]
and throw the table away. You're done.

Wanna do an example? Let's  pretend we have a four-character alphabet:
A,B,C,D. The charstream looks like ABACABA.  Let's compress it. First,
we initialize  our string table to: #0=A,  #1=B, #2=C, #3=D. The first
character is A, which is in the string table, so [.c.] becomes A. Next
we get  AB,  which  is not  in the table,  so we  output code  #0 (for
[.c.]), and add AB  to the string table  as code #4. [.c.]  becomes B.
Next we get [.c.]A = BA, which is  not in the  string table, so output
code #1, and add BA to  the string table as code  #5. [.c.] becomes A.
Next we get AC, which is not in the string table.  Output code #0, and
add AC to the string  table  as code #6. Now  [.c.] becomes C. Next we
get [.c.]A = CA, which is not in the table.  Output #2  for C, and add
CA to table as code#7. Now [.c.] becomes A.  Next we  get AB, which IS
in the string table,  so [.c.] gets AB,  and we look at ABA,  which is
not in the string table, so output the code for  AB,  which is #4, and
add ABA to the string table as code #8. [.c.] becomes A. We  can't get
any more characters,  so we just output #0  for   the code for  A, and

2/18/05 4:16 PMUntitled

Page 2 of 5http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF-comp.txt



we're done. So, the codestream is #0#1#0#2#4#0.

A few words (four) should be said here about efficiency: use a hashing
strategy.  The search through the string  table can be computationally
intensive, and some hashing is well worth the effort.  Also, note that
"straight  LZW" compression runs  the  risk of  overflowing the string
table - getting to a code which can't be represented in  the number of
bits you've set aside for codes.   There  are several  ways of dealing
with this problem, and GIF implements a very clever one, but we'll get
to that.

An  important   thing to  notice is  that, at any   point  during  the
compression, if  [...]K  is in the  string table, [...] is there also.
This fact  suggests  an efficient  method  for  storing strings in the
table.  Rather than store  the  entire string  of K's  in  the  table,
realize that any string can be expressed as a prefix plus a character:
[...]K. If  we're  about to  store [...]K  in the  table, we know that
[...] is already there, so we  can just store the  code for [...] plus
the final character K.

That  takes   care  of compression.   Decompression   is  perhaps more
difficult conceptually, but it is really easier  to program.  We again
have to start with an initialized  string table. This table comes from
what knowledge  we have about the  charstream  that we will eventually
get, like what possible values the characters  can take. In GIF files,
this information  is in the  header as the  number  of  possible pixel
values. The  beauty of  LZW, though, is  that this is   all we need to
know. We will build the rest of the string table  as we decompress the
codestream. The compression is done  in such a way that  we will never
encounter a code  in the  codestream  that we  can't translate  into a
string.

We  need to define   something called a  "current code",  which I will
refer  to as  "<code>", and an "old-code", which  I will   refer to as
"<old>". To start  things  off, look at  the first  code.  This is now
<code>. This code will be in the intialized string  table  as the code
for a  root.  Output the root  to the charstream.   Make this code the
old-code <old>. *Now look at the next code, and make  it <code>. It is
possible that  this code will  not be  in the string table, but  let's
assume for now that it is.  Output the  string corresponding to <code>
to the codestream. Now find the first character in the string you just
translated. Call this K.  Add this  to  the prefix [...]  generated by
<old>  to form  a  new string [...]K.   Add this string  [...]K to the
string table, and set the old-code <old>  to the current  code <code>.
Repeat from where I typed the asterisk,  and you're all set. Read this
paragraph again if you just skimmed it!!!

Now  let's consider the possibility  that <code> is  not in the string
table.  Think back to compression, and try  to understand what happens
when you have a string like  P[...]P[...]PQ  appear in the charstream.
Suppose P[...] is already in the string table, but P[...]P is not. The
compressor will parse out P[...], and find that P[...]P is  not in the
string table. It will output the  code for P[...],  and add P[...]P to
the string table.  Then it will get up to P[...]P for the next string,
and find that P[...]P is in the table, as  the code  just added. So it
will output the code for P[...]P if it finds  that P[...]PQ is  not in
the   table.   The decompressor   is always   "one  step behind"   the
compressor.  When the decompressor sees the code  for P[...]P, it will
not have added  that  code to it's string table  yet because it needed
the beginning character of P[...]P to  add  to the string for the last
code,  P[...],   to  form  the  code  for  P[...]P.   However, when  a
decompressor finds a code that it doesn't  know yet, it will always be

2/18/05 4:16 PMUntitled

Page 3 of 5http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF-comp.txt



the very next one to be added to the string  table. So it can guess at
what the string for the code should  be, and,  in fact, it will always
be correct. If  I am a decompressor, and  I  see code#124,  and yet my
string  table has entries only up  to code#123, I  can figure out what
code#124 must be, add it to my string table, and output the string. If
code#123 generated the string, which I will refer to here as a prefix,
[...], then code#124,  in this special  case,  will be [...]  plus the
first character of [...].  So just add the first character of [...] to
the end of itself. Not too bad.  As an example (and a very common one)
of this special case, let's assume we have a raster image in which the
first three pixels have  the same color value.  That is, my charstream
looks  like: QQQ....

For the sake of argument, let's say  we  have 32 colors, and  Q is the
color#12.  The compressor will generate  the code  sequence 12,32,....
(if you don't know why, take a minute to understand it.) Remember that
#32 is not  in the  initial table, which   goes from #0  to  #31.  The
decompressor will see #12 and translate it  just fine as color Q. Then
it will see #32 and  not yet know what  that means.  But  if it thinks
about it long enough, it can figure out  that QQ should be entry#32 in
the   table and  QQ  should  be  the  next  string  output.    So  the
decompression pseudo-code goes something like:

     [1] Initialize string table;
     [2] get first code: <code>;
     [3] output the string for <code> to the charstream;
     [4] <old> = <code>;
     [5] <code> <- next code in codestream;
     [6] does <code> exist in the string table?
      (yes: output the string for <code> to the charstream;
            [...] <- translation for <old>;
            K <- first character of translation for <code>;
            add [...]K to the string table;        <old> <- <code>;  )
      (no: [...] <- translation for <old>;
           K <- first character of [...];
           output [...]K to charstream and add it to string table;
           <old> <- <code>
      )
     [7] go to [5];

Again,  when you get to step  [5] and there  are no more codes, you're
finished.  Outputting of strings, and finding of initial characters in
strings are efficiency problems all  to themselves, but I'm not  going
to  suggest ways  to do  them  here.  Half the  fun  of programming is
figuring these things out!

Now for  the GIF variations  on the theme. In  part of the header of a
GIF file, there  is a  field, in the  Raster Data stream, called "code
size".  This is a very  misleading name for  the field, but we have to
live with it. What it  is really is the "root  size". The actual size,
in   bits,  of     the compression  codes  actually    changes  during
compression/decompression, and I will refer  to that size  here as the
"compression size".  The initial table is just  the codes for all  the
roots, as  usual, but  two  special  codes are  added on top of those.
Suppose you have a  "code  size", which is usually  the number of bits
per pixel in the image, of N. If the number of bits/pixel is one, then
N must be 2: the roots take up  slots #0  and #1 in the initial table,
and the two special  codes will take up slots  #4 and #5. In any other
case, N is the number of bits  per pixel, and  the roots take up slots
#0 through #(2**N-1), and the special codes are (2**N) and (2**N + 1).
The initial compression size  will be N+1 bits   per  code.  If you're
encoding, you output the codes (N+1) bits at a time to start with, and

2/18/05 4:16 PMUntitled

Page 4 of 5http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF-comp.txt



if you're decoding, you grab (N+1) bits from the codestream at a time.
As for  the  special codes: <CC>  or  the  clear code, is  (2**N), and
<EOI>, or end-of-information, is (2**N + 1). <CC> tells the compressor
to re- initialize the string table, and to  reset the compression size
to (N+1). <EOI> means there's no  more  in  the codestream.  If you're
encoding  or  decoding, you should  start  adding things to the string
table at <CC> + 2. If you're  encoding, you should  output <CC> as the
very  first code, and then  whenever after that  you reach code  #4095
(hex FFF), because GIF does not allow compression sizes to  be greater
than 12 bits. If you're decoding, you  should reinitialize your string
table  when you   observe <CC>.  The   variable compression sizes  are
really no big deal. If you're encoding,  you start  with a compression
size of (N+1) bits, and, whenever you output the code (2**(compression
size)-1), you bump the compression size  up one bit.  So the next code
you output  will   be one   bit   longer.  Remember  that  the largest
compression size is 12 bits, corresponding to a  code of  4095. If you
get that far, you must output <CC> as the  next code,  and start over.
If you're decoding, you must increase your compression size AS SOON AS
YOU write entry #(2**(compression size) - 1) to the  string table. The
next code you READ will be one bit longer.  Don't make  the mistake of
waiting until you need to  add the code (2**compression  size)  to the
table.  You'll have  already missed  a bit  from  the  last code.  The
packaging of  codes  into a bitsream  for  the raster data is   also a
potential stumbling  block for   the novice  encoder  or decoder.  The
lowest order bit in the code should coincide with the lowest available
bit in the first  available byte  in the codestream. For  example,  if
you're starting with  5-bit compression  codes,  and your first  three
codes are,  say,  <abcde>, <fghij>, <klmno>,  where  e,  j, and o  are
bit#0, then your codestream will start off like:

       byte#0: hijabcde
       byte#1: .klmnofg

so  the   differences  between  straight  LZW and GIF   LZW   are: two
additional special  codes and   variable   compression sizes.  If  you
understand LZW, and you understand those variations, you understand it
all!

Just as sort of a P.S., you  may have noticed that  a compressor has a
little bit of flexibility at compression  time. I specified a "greedy"
approach to the compression, grabbing  as many characters as  possible
before outputting  codes. This is,  in fact, the  standard  LZW way of
doing things, and  it  will yield  the  best  compression   ratio. But
there's no rule saying you can't stop anywhere along the line and just
output the code  for the current  prefix, whether it's already in  the
table or  not,  and add  that  string plus the  next character  to the
string  table. There  are   various reasons   for wanting  to do this,
especially  if  the  strings  get  extremely  long  and  make  hashing
difficult.  If you need to, do it.

2/18/05 4:16 PMUntitled

Page 5 of 5http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF-comp.txt



JPEG File Interchange Format
Version 1.02

September 1, 1992

                            Eric Hamilton
                            C-Cube Microsystems
                            1778 McCarthy Blvd.
                            Milpitas, CA 95035

                            +1 408 944-6300
                            Fax: +1 408 944-6314
                            E-mail: eric@c3.pla.ca.us

JPEG File Interchange Format
Version 1.02

Why a File Interchange Format

JPEG File Interchange Format is a minimal file format which enables JPEG bitstreams to 
be exchanged between a wide variety of platforms and applications.  This minimal format 
does not include any of the advanced features found in the TIFF JPEG specification or any 
application specific file format. Nor should it, for the only purpose of this simplified 
format is to allow the exchange of JPEG compressed images.

JPEG File Interchange Format features

o      Uses JPEG compression
o      Uses JPEG interchange format compressed image representation
o      PC or Mac or Unix workstation compatible
o      Standard color space: one or three components. For three components, YCbCr 
       (CCIR 601-256 levels)
o      APP0 marker used to specify Units, X pixel density, Y pixel density, thumbnail
o      APP0 marker also used to specify JFIF extensions
o      APP0 marker also used to specify application-specific information

JPEG Compression

Although any JPEG process is supported by the syntax of the JPEG File Interchange Format 
(JFIF) it is strongly recommended that the JPEG baseline process be used for the purposes 
of file interchange. This ensures maximum compatibility with all applications supporting 
JPEG. JFIF conforms to the JPEG Draft International Standard (ISO DIS 10918-1).

The JPEG File Interchange Format is entirely compatible with the standard JPEG 

2/18/05 4:16 PMUntitled

Page 1 of 6http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/JPEG.txt



interchange format;  the only additional requirement is the mandatory presence of the 
APP0 marker right after the SOI marker.  Note that JPEG interchange format requires (as 
does JFIF) that all table specifications used in the encoding process be coded in the 
bitstream prior to their use.

Compatible across platforms

The JPEG File Interchange Format is compatible across platforms: for example, it does not 
use any resource forks, supported by the Macintosh but not by PCs or workstations.

Standard color space

The color space to be used is YCbCr as defined by CCIR 601 (256 levels).  The RGB 
components calculated by linear conversion from YCbCr shall not be gamma corrected 
(gamma = 1.0).  If only one component is used, that component shall be Y.

APP0 marker used to identify JPEG FIF

The APP0 marker is used to identify a JPEG FIF file.  The JPEG FIF APP0 marker is 
mandatory right after the SOI marker.

The JFIF APP0 marker is identified by a zero terminated string: "JFIF". The APP0 can be 
used for any other purpose by the application provided it can be distinguished from the 
JFIF APP0. 

The JFIF APP0 marker provides information which is missing from the JPEG stream: 
version number, X and Y pixel density (dots per inch or dots per cm), pixel aspect ratio 
(derived from X and Y pixel density), thumbnail.

APP0 marker used to specify JFIF extensions

Additional APP0 marker segment(s) can optionally be used to specify JFIF extensions.  If 
used, these segment(s) must immediately follow the JFIF APP0 marker.  Decoders should 
skip any unsupported JFIF extension segments and continue decoding.

The JFIF extension APP0 marker is identified by a zero terminated string:  "JFXX".  The 
JFIF extension APP0 marker segment contains a 1-byte code which identifies the extension. 
This version, version 1.02, has only one extension defined:  an extension for defining 
thumbnails stored in formats other than 24-bit RGB.

APP0 marker used for application-specific information

Additional APP0 marker segments can be used to hold application-specific information 
which does not affect the decodability or displayability of the JFIF file.  Application-
specific APP0 marker segments must appear after the JFIF APP0 and any JFXX APP0 
segments.  Decoders should skip any unrecognized application-specific APP0 segments. 

Application-specific APP0 marker segments are identified by a zero terminated string 
which identifies the application (not "JFIF" or "JFXX").  This string should be an 
organization name or company trademark.  Generic strings such as dog, cat, tree, etc. 
should not be used. 

Conversion to and from RGB

Y, Cb, and Cr are converted from R, G, and B as defined in CCIR Recommendation 601 
but are normalized so as to occupy the full 256 levels of a 8-bit binary encoding.  More 
precisely:

Y   = 256 * E'y
Cb  = 256 * [ E'Cb ] + 128
Cr  = 256 * [ E'Cr ] + 128

2/18/05 4:16 PMUntitled

Page 2 of 6http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/JPEG.txt



where the E'y, E'Cb and E'Cb are defined as in CCIR 601.  Since values of E'y have a 
range of 0 to 1.0 and those for  E'Cb and E'Cr have a range of -0.5 to +0.5,  Y, Cb, and Cr 
must be clamped to 255 when they are maximum value.

RGB to YCbCr Conversion

YCbCr (256 levels) can be computed directly from 8-bit RGB as follows:

Y   =     0.299  R + 0.587  G + 0.114  B
Cb  =   - 0.1687 R - 0.3313 G + 0.5    B + 128
Cr  =     0.5    R - 0.4187 G - 0.0813 B + 128

NOTE - Not all image file formats store image samples in the order R0, G0, 
B0, ... Rn, Gn, Bn.  Be sure to verify the sample order before converting an 
RGB file to JFIF.

YCbCr to RGB Conversion

RGB can be computed directly from YCbCr (256 levels) as follows:

R = Y                    + 1.402   (Cr-128)
G = Y - 0.34414 (Cb-128) - 0.71414 (Cr-128)
B = Y + 1.772   (Cb-128)

Image Orientation

In JFIF files, the image orientation is always top-down.  This means that the first image 
samples encoded in a JFIF file are located in the upper left hand corner of the image and 
encoding proceeds from left to right and top to bottom.  Top-down orientation is used for 
both the full resolution image and the thumbnail image.

The process of converting an image file having bottom-up orientation to JFIF must include 
inverting the order of all image lines before JPEG encoding

Spatial Relationship of Components

Specification of the spatial positioning of pixel samples within components relative to the 
samples of other components is necessary for proper image post processing and accurate 
image presentation.  In JFIF files, the position of the pixels in subsampled components are 
defined with respect to the highest resolution component.  Since components must be 
sampled orthogonally (along rows and columns), the spatial position of the samples in a 
given subsampled component may be determined by specifying the horizontal and vertical 
offsets of the first sample, i.e. the sample in the upper left corner, with respect to the 
highest resolution component.

The horizontal and vertical offsets of the first sample in a subsampled component, 
Xoffseti[0,0] and Yoffseti[0,0], is defined to be

Xoffseti[0,0] = ( Nsamplesref / Nsamplesi  ) / 2 - 0.5
Yoffseti[0,0] = ( Nlinesref / Nlinesi  ) / 2 - 0.5

where
Nsamplesref is the number of samples per line in the largest component,
Nsamplesi is the number of samples per line in the ith component,
Nlinesref is the number of lines in the largest component,
Nlinesi is the number of lines in the ith component.

Proper subsampling of components incorporates an anti-aliasing filter which reduces the 
spectral bandwidth of the full resolution components.   Subsampling can easily be 
accomplished using a symmetrical digital filter with an even number of taps (coefficients). 
A commonly used filter for 2:1 subsampling utilizes two taps (1/2,1/2).

2/18/05 4:16 PMUntitled

Page 3 of 6http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/JPEG.txt



NOTE - This definition is compatible with industry standards such as Postcript 
Level 2 and QuickTime. This defintition is not compatible with the conventions 
used by CCIR Recommendation 601-1 and other digital video formats.  For these 
formats, pre-processing of the chrominance components is necessary prior to 
compression in order to ensure accurate reconstruction of the compressed image.

JPEG File Interchange Format Specification

The syntax of a JFIF file conforms to the syntax for interchange format defined in Annex B 
of ISO DIS 10918-1.  In addition, a JFIF file uses APP0 marker segments and constrains 
certain parameters in the frame header as defined below.

    X'FF', SOI
         X'FF', APP0, length, identifier, version, units, Xdensity, Ydensity, Xthumbnail,
          Ythumbnail, (RGB)n
              length     (2 bytes)  Total APP0 field byte count, including the byte 
                                    count value (2 bytes), but excluding the APP0 
                                    marker itself
              identifier (5 bytes)  = X'4A', X'46', X'49', X'46', X'00' 
                                    This zero terminated string ("JFIF") uniquely 
                                    identifies this APP0 marker.  This string shall 
                                    have zero parity (bit 7=0).
              version    (2 bytes)  = X'0102'
                                    The most significant byte is used for major 
                                    revisions, the least significant byte for minor 
                                    revisions. Version 1.02 is the current released 
                                    revision.
              units      (1 byte)   Units for the X and Y densities.
                                    units = 0:  no units, X and Y specify the pixel 
                                         aspect ratio
                                    units = 1:  X and Y are dots per inch
                                    units = 2:  X and Y are dots per cm
              Xdensity   (2 bytes)  Horizontal pixel density
              Ydensity   (2 bytes)  Vertical pixel density
              Xthumbnail (1 byte)   Thumbnail horizontal pixel count
              Ythumbnail (1 byte)   Thumbnail vertical pixel count
              (RGB)n     (3n bytes) Packed (24-bit) RGB values for the thumbnail 
                                    pixels, n = Xthumbnail * Ythumbnail
        [ Optional JFIF extension APP0 marker segment(s) - see below ]
                o
                o
                o
        X'FF', SOFn, length, frame parameters
           Number of components Nf  = 1 or 3
           1st component    C1    = 1 = Y component
           2nd component    C2    = 2 = Cb component
           3rd component    C3    = 3 = Cr component
                o
                o
                o
    X'FF', EOI

JFIF Extension APP0 Marker Segment

Immediately following the JFIF APP0 marker segment may be a JFIF extension APP0 
marker.  This JFIF extension APP0 marker segment may only be present for JFIF versions 
1.02 and above.  The syntax of the JFIF extension APP0 marker segment is:

         X'FF', APP0, length, identifier, extension_code, extension_data
            length   (2 bytes)    Total APP0 field byte count, including the byte 
                                count value (2 bytes), but excluding the APP0 

2/18/05 4:16 PMUntitled

Page 4 of 6http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/JPEG.txt



                                marker itself
            identifier  (5 bytes)    = X'4A', X'46', X'58', X'58', X'00' 
                                This zero terminated string ("JFXX") uniquely 
                                identifies this APP0 marker.  This string shall 
                                have zero parity (bit 7=0).
            extension_code (1 byte)    = Code which identifies the extension.  In this 
                                version, the following extensions are defined:
                                   = X'10'   Thumbnail coded using JPEG
                                   = X'11'   Thumbnail stored using 1 byte/pixel
                                   = X'13'   Thumbnail stored using 3 bytes/pixel
            extension_data (variable)    = The specification of the remainder of the JFIF 
                                extension APP0 marker segment varies with the 
                                extension. See below for a specification of 
                                extension_data for each extension.

JFIF Extension:  Thumbnail coded using JPEG

This extension supports thumbnails compressed using JPEG.  The compressed thumbnail 
immediately follows the extension_code (X'10') in the extension_data field and the length 
of the compressed data must be included in the JFIF extension APP0 marker length field.

The syntax of the extension_data field conforms to the syntax for interchange format defined 
in Annex B of ISO DIS 10918-1.  However, no "JFIF" or "JFXX" marker segments shall 
be present.  As in the full resolution image of the JFIF file, the syntax of extension_data 
constrains parameters in the frame header as defined below:

    X'FF', SOI
                o
                o
                o
        X'FF', SOFn, length, frame parameters
             Number of components    Nf    = 1 or 3
             1st component    C1    = 1 = Y component
             2nd component    C2    = 2 = Cb component
             3rd component    C3    = 3 = Cr component
                o
                o
                o
    X'FF', EOI

JFIF Extension:  Thumbnail stored using one byte per pixel

This extension supports thumbnails stored using one byte per pixel and a color palette in 
the extension_data field.  The syntax of extension_data is:

        Xthumbnail       (1 byte)    Thumbnail horizontal pixel count
        Ythumbnail       (1 byte)    Thumbnail vertical pixel count
        palette          (768 bytes)  24-bit RGB pixel values for the color palette.
                                      The RGB values define the colors represented by
                                      each value of an 8-bit binary encoding (0 - 255).
        (pixel)n        (n bytes)     8-bit values for the thumbnail pixels 
                                      n = Xthumbnail * Ythumbnail

JFIF Extension:  Thumbnail stored using three bytes per pixel

This extension supports thumbnails stored using three bytes per pixel in the extension_data 
field.  The syntax of extension_data is:

        Xthumbnail       (1 byte)    Thumbnail horizontal pixel count
        Ythumbnail       (1 byte)    Thumbnail vertical pixel count
        (RGB)n           (3n bytes)  Packed (24-bit) RGB values for the thumbnail 

2/18/05 4:16 PMUntitled

Page 5 of 6http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/JPEG.txt



                                     pixels, n = Xthumbnail * Ythumbnail

Useful tips

o you can identify a JFIF file by looking for the following sequence: X'FF', SOI, X'FF', 
APP0, <2 bytes to be skipped>, "JFIF", X'00'.

o if you use APP0 elsewhere, be sure not to have the strings "JFIF" or "JFXX" right after 
the APP0 marker.

o if you do not want to include a thumbnail, just program Xthumbnail = Ythumbnail = 0.

o be sure to check the version number in the special APP0 field.  In general, if the major 
version number of the JFIF file matches that supported by the decoder, the file will be 
decodable.

o if you only want to specify a pixel aspect ratio, put 0 for the units field in the special 
APP0 field. Xdensity and Ydensity can then be programmed for the desired aspect ratio. 
Xdensity = 1, Ydensity = 1 will program a 1:1 aspect ratio.  Xdensity and Ydensity should 
always be non-zero.

2/18/05 4:16 PMUntitled

Page 6 of 6http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/JPEG.txt



Disc Manufacturing, Inc.
A QUIXOTE COMPANY

Introduction to ISO 9660,

what it is, how it is implemented, and
how it has been extended.

Clayton Summers

Copyright © 1993 by Disc Manufacturing, Inc. All rights reserved.



WHO IS DMI?

Disc Manufacturing, Inc. (DMI) manufactures all compact disc formats (i.e., CD-Audio,
CD-ROM, CD-ROM XA, CDI, PHOTO CD, 3DO, KARAOKE, etc.) at two plant sites in
the U.S.; Huntsville, AL, and Anaheim, CA.  To help you, DMI has one of the largest
Product Engineering/Technical Support staff and sales force dedicated solely to
CD-ROM in the industry.

The company has had a long term commitment to optical disc technology and has
performed developmental work and manufactured (laser) optical discs of various types
since 1981.  In 1983, DMI manufactured the first compact disc in the United States.  DMI
has developed extensive mastering expertise during this time and is frequently called
upon by other companies to provide special mastering services for products in
development.

In August 1991, DMI purchased the U.S. CD-ROM business from the Philips and
Du Pont Optical Company (PDO).  PDO employees in sales, marketing and technical
services were retained.

DMI is a wholly-owned subsidiary of Quixote Corporation, a publicly owned corporation
whose stock is traded on the NASDAQ exchange as QUIX.  Quixote is a diversified
technology company composed of Energy Absorption Systems, Inc. (manufactures
highway crash cushions), Stenograph Corporation (manufactures shorthand machines and
computer systems for court reporting) and Disc Manufacturing, Inc.

We would be pleased to help you with your CD project or answer any questions you may
have.  Please give us a call at 1-800-433-DISC for pricing or further information.

We have four additional technical papers available entitled

Integrating Mixed-Mode CD-ROM

An Overview to MultiMedia CD-ROM Production

Compact Disc Terminology - 2nd Edition

A Glossary of CD and CD-ROM Terms

These are available upon request
800-433-DISC
302-479-2500

Fax:  302-479-2527



This paper was written in response to the many questions we, as a
CD-ROM manufacturer, have received concerning ISO 9660.  Our
intent was to provide clarity and simplification to a very technical
subject. We hope you find it helpful.

For reprinting privileges, call or write to:
Nancy Klocko

Disc Manufacturing, Inc.
1409 Foulk Rd., Suite 102
Wilimington, DE  19803

800-433-DISC, 302-479-2527

Acknowledgments

Without the help of many people, this paper would not have been
possible.

Special Thanks go to:

Wendy Upham and Breck Rowell for working on how MS-DOS and the
Macintosh implement ISO 9660 and what some of the quirks are

John Sands at Young Minds

Apple Computer

Doug Carson and Associates

and Nancy Klocko and Pam Sansbury for invaluable help editing and
revising and Lori Magno for formatting.



Table of Contents

Introduction to ISO 9660.........................................................................1
Background .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

File Systems...............................................................................3
Overview of ISO-9660 structure.................................................................4

The Volume Descriptors.................................................................4
The Primary Volume Descriptor...............................................5

The Standard Identifier.................................................6
The Volume Identifier..................................................6
The Volume Set Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
The System Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
The Volume Size........................................................7
Volume Set Size and Sequence Number.............................7
The Logical Block Size .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
The Path Table..........................................................7
The Root Directory record.............................................8
Other identifiers.........................................................8
The time stamps.........................................................8

The Directory Structure..................................................................9
File Names .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Order of Directory Records.....................................................13

The Path Table............................................................................15
Levels of Interchange .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
ISO 9660 Implementation Requirements .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

Implementations of ISO 9660....................................................................19
DOS.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Macintosh..................................................................................23
UNIX... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Extensions to ISO 9660...........................................................................26
Apple ISO 9660...........................................................................26

The Protocol Identifier..........................................................28
The Directory Record System Use Field......................................29

The Rock Ridge Proposals..............................................................30
Rock Ridge System Use Sharing Protocol (SUSP).........................30
Rock Ridge Interchange Protocol (RRIP)....................................32

File Names .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Deep directories.........................................................33

Updatable ISO 9660......................................................................35
The Frankfurt Group Proposal, ECMA 168 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Summary of ISO 9660............................................................................37
Appendix A

ISO 9660 Structures......................................................................I
Appendix B

Common Q&A............................................................................VII



Tables

Table 1. Length of the Path.......................................................................10
Table 2. The File Identifier.......................................................................12
Table 3. File Identifiers...........................................................................13
Table 4. Relative Value of File Names..........................................................14
Table 5. Relative Value of Extensions and Version Numbers................................14
Table 6. Sorted File Identifiers...................................................................15
Table 7. Long ISO File Identifiers under MS-DOS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 8. Illegal d-characters and Microsoft extensions........................................22
Table 9. Sorting illegal ISO-9660 File Identifiers .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 10. UNIX File name conversions........................................................25
Table 11. Apple ISO 9660 Directory Record System Use Field.............................29
Table 12. SUSP System Use Field..............................................................31
Table 13. Suggested Characters for RRIP File Identifiers....................................33
Table 14. Primary Volume Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Table 15. Directory Record.......................................................................IV
Table 16. Path Table Record.....................................................................VI

Figures

Figure 1.  ISO 9660 structures...................................................................4
Figure 2.  The Primary Volume Descriptor.....................................................5
Figure 3. The d-characters........................................................................6
Figure 4. The a-characters........................................................................7
Figure 5. The Directory Hierarchy .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 6. Parent Directories......................................................................11
Figure 7. ISO 9660 World View ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 8.  UNIX directory .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 9. Apple Macintosh generic Icons.......................................................28
Figure 10. Remapped Directory structure .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Figure 11. Updatable ISO 9660 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35



Introduction to ISO 9660

Introduction to ISO 9660

The Digital Audio Compact Disc has been called the most successful consumer product ever

launched.  Since it's introduction in June of 1980, the CD has come to dominate the music industry

and become the format of choice for millions of music listeners due to the ultra high fidelity afforded

by the digital recording technique and the near indestructibility afforded by the optical design. These

same features make the CD very attractive as a carrier of other types of digital information.  Another

feature that makes the Compact Disc attractive as a medium for digital information is that CDs can be

manufactured in large quantities quickly and inexpensively.  Also, due to the industry standards

defined by the Red Book, Yellow Book, and ISO 9660, any CD can be used on almost any

hardware/software platform.  It, therefore, comes as no surprise that this 15 grams of poly-carbonate

and aluminum which contains billions of bits of data would be embraced by the computer industry to

store and distribute huge amounts of data.  However, creating a disc that works on multiple

platforms is not as simple as copying files to a floppy.

Background

Before ISO 9660, all CD-ROM discs could be read by all CD-ROM drives; however, CD-ROM

drives were not supported by any readily available computer operating system. Application

developers were required to have software device drivers for each computer and CD-ROM drive

combination that they wanted to support. In addition, most applications require a file structure and

this had to be provided by each developer as well.

Typically, application developers used a systems house to provide device drivers and file system

software as well as build and retrieval engines. The result was that application developers requested

both enhancements to the build and retrieval engines and support for additional drive types. The

systems houses had to spend critical resources to develop these drivers when they would have

preferred to spend those resources in other areas. A committee called High Sierra was formed to

develop an industry standard to address the file system software.

May 22, 1995 Page 1



Introduction to ISO 9660

The High Sierra proposal was designed to enable data interchange between computers using

standardized software.  When a computer is equipped for either High Sierra or ISO 9660, data on

any properly encoded CD-ROM may be read using standard operating system instructions such as

list directory, open, read and close. This reduces the amount of effort required to bring an application

to market. In addition, discs may be read by any drive that has standard driver software.

High Sierra was defined and submitted to the International Standards Organization in May of 1986.

During the time it was being debated and approved, the companies involved in creating the High

Sierra proposal went ahead and implemented High Sierra.  ISO 9660 was published in April of

1988.  ISO made several minor changes during the process that made the ISO 9660 standard

incompatible with the High Sierra proposal.  The changes involved rearranging the order of the

information in the directory record and changing the code that identifies the disc as a High Sierra or

ISO 9660 disc, among other, more esoteric, items.

To accurately and repeatedly create ISO-9660 discs requires an understanding of what ISO-9660 is

and how it is implemented by different platforms.  First a little background information will be

presented that helps put the concept of a common format for data interchange into perspective.  This

will be accomplished by discussing file systems and how they relate to the computer's operating

system.  Then ISO-9660 will be covered in general terms and some of the more commonly used

features and data structures will be covered in some detail.  A description, at a conceptual level, of

how some operating systems implement support for ISO-9660 and notes regarding some of the

peculiarities this causes will then be presented.  Then some of the ways ISO-9660 has been extended

to provide better support for two particular operating systems, the Macintosh and UNIX

environments, will be introduced.  Finally, the Frankfurt proposal, an extension to ISO 9660 that

allows updating information on a recordable CD, will be discussed.

May 22, 1995 Page 2



Introduction to ISO 9660

File Systems

Most operating systems store information in both fast, short term memory usually referred to as

Random Access Memory or RAM, as well as in relatively slow, long term memory.  Typically, the

slow, long term memory takes the form of a floppy disk, or hard disk and is stored as files.  If we

compare this to someone's office, the fast, short term memory can be compared to the desktop,

where things are actually being worked on.  The slow, long term disk can be compared to the file

cabinet, where unused items are put until needed.  The way the operating system keeps track of

where files are located is called the file system.  Examples of file systems are MS-DOS's FAT (File

Allocation Table), the Macintosh HFS (Hierarchical File System), OS/2's HPFS (High Performance

File System), and the UNIX File System.  All of these file systems are specific to, and optimized

for, a particular operating system.  ISO-9660 is also a file system.  However, it was designed to be

independent of any operating system, and because it was designed for CD-ROM, is also "read only".

This means that unlike the other file systems mentioned, it does not provide any way to add to or

change the information in it.  Since ISO 9660 was intended to be used on a diverse group of

operating systems, it includes only the minimum information that can be utilized by the widest

variety of systems.

May 22, 1995 Page 3



Introduction to ISO 9660

Overview of ISO-9660 structure.

 Primary 
  Volume
Descriptor

Path Table

Directory Structure

/ root

/sub1 /sub2 /sub3

/sub1/sub12

//sub1/sub2/sub3     /sub12

Path 
Table

Root

file1
file2
file3

file1

file2

file3

Figure 1.  ISO 9660 structures

ISO 9660 data structures fall into three main categories: the Volume Descriptors, the Directory

Structures, and the Path Tables. These structures are interrelated as shown in figure 1.  The Volume

Descriptor tells where the directory structure and the Path Table are located,  the directories tell us

where the actual files are located, and the Path table gives us short cuts to each directory .

The Volume Descriptors

There are currently four types of Volume Descriptors defined in ISO 9660.  Only one of these, the

Primary Volume Descriptor, is commonly used.  The other types are the Boot Record, the

Supplementary Volume Descriptor, and the Volume Partition Descriptor.  The Boot Record can be

used for systems that must perform some type of initialization before the user can access the volume,

although ISO 9660 does not specify what information must be in the Boot Record or how it is to be

used.  The Supplementary Volume Descriptor can be used to identify an alternate character set for

use by systems that do not support the ISO 646 character set.   The Volume Partition Descriptor can

be used to logically divide the volume into smaller volume partitions, although ISO 9660 does not

May 22, 1995 Page 4



Introduction to ISO 9660

specify how to do this, only that it can be done.1  The Volume Descriptors are recorded starting at

Logical Sector 16 (which corresponds to two seconds and sixteen sectors into the CD, or in CD

"Atime", 00:02:16).

The Primary Volume Descriptor

Standard Identifier (CD001)

Volume Identifier

Volume Set Identifier

System Identifier

Volume Size

Number of Volumes in this Set

Number of this Volume in the Set

Logical Block Size

Size of the Path Table

Location of the Path Table

Root Directory Record

Other Identifiers

Time Stamps

Figure 2.  The Primary Volume Descriptor

The Primary Volume Descriptor as seen in figure 2 is the starting point in identifying a CD-ROM.  It

contains the Standard Identifier, the Volume Identifier, the Volume Set Identifier, the System

1ISO 9660-1988, pp. 11, section 8.1.1

May 22, 1995 Page 5



Introduction to ISO 9660

Identifier ,the size of the Volume, the number of Volumes in the Volume Set it belongs to, the

sequence within the Volume Set that this Volume belongs, the Logical Block size of the blocks in

this volume, the size of the Path Table, the location of the Path Table, the Directory record for the

Root Directory, other identifiers and important times relating to the Volume.2

The Standard Identifier is a set of characters, defined by ISO 9660 to be CD001, that tells the

Operating System that this is an ISO 9660 disc.  This is to distinguish the volume from other file

systems that use a similar layout, such as High Sierra, whose Standard Identifier is CDROM, and

Compact Disc Interactive, whose Standard Identifier is CD-I.

The Volume Identifier is simply the name that is given to the ISO 9660 volume.

The characters that can be used in the Volume Identifier are restricted to what ISO 9660 calls d-

characters and the length is restricted to 31 characters.  The d-characters are shown in figure 3.

 

A B C D E F G H I J K L M N O P Q R S 
T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

Figure 3. The d-characters

Some systems, such as the Macintosh, use the Volume Identifier extensively.  Others, such as MS-

DOS, use it somewhat, and some, such as UNIX, barely use it at all.

The Volume Set Identifier is the name given to the Multiple Volume Set that this Volume belongs to.

Like the Volume Identifier, it is restricted to the d-characters and cannot be more than 31 characters

long.  For example, if this Volume where named DICTIONARY_E_H, it might have a Volume Set

Identifier of DICTIONARY, meaning that this Volume contains the words starting with the letter E

through the letter H, and the Volume Set is the set of discs for the entire alphabet.

2see Appendix A: Table 14 and ISO 9660-1988, pp. 12-16, section 8.4

May 22, 1995 Page 6



Introduction to ISO 9660

The System Identifier identifies a system that can recognize and act on logical sectors 0 through 15.3

While ISO 9660 specifies that this is what the System Identifier is used for, it does not specify what

is in sectors 0 through 15, nor does it specify how the data is used.  The characters that can be used

in the System ID are what ISO 9660 calls a-characters and the length is restricted to 31 characters.

The a-characters are shown in figure 4.

A B C D E F G H I J K L M N O P Q R S 
T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _   
! " % & ' ( ) * + , - . / : ; < = > ?

sp

Figure 4. The a-characters

The Volume Size is a number that tells the operating system how many Logical Blocks are in this

Volume.  A Logical Block is the basic way of locating things in the Volume.  All locations are given

as Logical Block Numbers.  If the Volume is pictured as an Interstate highway, then the Logical

Block Numbers are the mile markers.

 Volume Set Size is a number that tells the operating system how many volumes are in the Volume

Set to which this Volume belongs.  The Volume Sequence Number is the place within a multiple

volume set that this volume belongs.  For example  on a disc with Volume Set Size of 5 and Volume

Sequence Number of 3, this disc is the third disc of a five disc set.

The Logical Block Size is the number of bytes that make up the smallest amount of space that is

allocated in this volume.  This number can be 512, 1024, or 2048 bytes.  Most ISO 9660 discs use a

Logical Block Size of 2048, the same as the Sector Size.

The Path Table Size tells the operating system how many bytes are in the Path Table.  Most operating

systems that use the Path Table keep it in fast, local memory (RAM), and this number is a quick way

3ISO 9660-1988, pp.13, section 8.4.5

May 22, 1995 Page 7



Introduction to ISO 9660

for the operating system to know how much memory it needs to allocate before it reads the Path

Table.  This way the Operating system only reads the Path Table once, saving time.  The location of

the Path Table must be in the Primary Volume Descriptor since the Path Table itself may be

anywhere in the Volume.

The Root Directory record contains the information the operating system needs to locate and read the

top level directory.  It is formatted exactly the same as any other directory record.4

Other identifiers in the Primary Volume Descriptor contain information about who published this

Volume, who prepared the data, what the application is, and what the names of the files are that

contain the copyright notice, the abstract, and the bibliography.

The time stamps are fields in the Primary Volume Descriptor that contain information about when the

Volume was created, when it may have been modified, when the data becomes effective, and when

the data becomes obsolete.

4See Appendix A, Table 15, page IV

May 22, 1995 Page 8



Introduction to ISO 9660

The Directory Structure

The ISO 9660 directory structure is organized in a hierarchical manner similar to most modern file

systems.5  At the top of the hierarchy is the Root Directory, the location of which is identified in the

Primary Volume Descriptor.    When drawn hierarchically, the directory structure resemble the roots

of a tree, with the Root directory at the top of the structure, as shown in figure 5.

Root Directory

ALPS ROCKIES

AUSTRIAN FRENCH

SKIING

Level 1

Level 2

Level 3

Level 4

Figure 5.  The Directory Hierarchy

MATTERHORN.MOUNT;1 Level 5

5ISO 9660:1988, pp.7, section 6.8.2

May 22, 1995 Page 9



Introduction to ISO 9660

As shown in figure 5, there are distinct levels in this hierarchy.  The Root Directory is the only

directory at level 1.  In the example illustrated by figure 5, Subdirectories ALPS and ROCKIES are

at level 2, Subdirectories AUSTRIAN and FRENCH are at level 3, Subdirectory SKIING is at level

4, and the file MATTERHORN.MOUNT;1 is at level 5.  To insure compatibility, ISO 9660 imposes

a limit of eight levels to the depth of the directory structure.6  It also imposes a limit on the length of

the path to each file.  The length of the path is the sum of the lengths of all relevant directories ,the

length of the File Identifier, and the number of relevant directories.  The length of the path  cannot

exceed 255.  Again, in figure 5, the sum of the length of the File Identifier ,the lengths of the

relevant directories , and the number of relevant directories is 39 as shown in table 1.

Table 1. Length of the Path

Identifier Length

ALPS 4
AUSTRIAN 8
SKIING 6
MATTERHORN.MOUNT;1 18
number of directories 3

sum of lengths and number of directories 39

A directory in an ISO-9660 volume is recorded as a file containing a set of directory records.  Each

directory record describes a file or another directory.  Every directory has a parent directory. The

parent directory contains the directory record that identifies that directory, as shown in figure 6.

6ISO 9660:1988, pp.7, section 6.8.2.1

May 22, 1995 Page 10



Introduction to ISO 9660

Root Directory

ALPS ROCKIES

AUSTRIAN FRENCH

SKIING

Figure 6.  Parent Directories

MATTERHORN.MOUNT;1

Parent 
Directory

Parent 
Directory

Parent 
Directory

Parent 
Directory

Parent 
Directory

 The Root directory's parent is the Root directory itself.

Each directory also contains a record for its parent directory.  A given directory may contain entries

for several files as well as for several directories, all of which have the same parent.

May 22, 1995 Page 11



Introduction to ISO 9660

File Names

Every file and directory in an ISO 9660 Volume has a name an identifying name associated with it.

This name is called the File Identifier.  An ISO 9660 File Identifier actually consists of five parts as

shown in table 2.7

Table 2. The File Identifier
1)

File Name
2)

SEPARATOR
1

3)
File Name
Extension

4)
SEPARATOR

2

5)
File Version

Number
contents d-characters

(see figure 3) .
d-characters

(see figure 3) ;
a number from

1 to 32767

file 1 MATTERHORN . MOUNT ; 1

file 2 PIKES_PEAK . ; 1

file 3 . HILLS ; 1

directory SKIING

The File Identifier must also meet the following conditions:8

- If the File Name has no characters, then the File Name Extension must have

at least one character, as shown in table 2, file 3.

- If the File Name Extension has no characters, then the File Name must have

at least one character, as shown in table 2, file 2.

- The sum of the lengths of the File Name and the File Name Extension cannot

exceed 30.

7ISO 9660:1988, pp. 10, section 7.5.1
8ISO 9660:1988, pp. 10, section 7.5.1

May 22, 1995 Page 12



Introduction to ISO 9660

An ISO 9660 directory name is limited to only a Name; it cannot have a SEPARATOR 1 ( . ), an

Extension, a SEPARATOR 2 ( ; ) or a version number, as shown in table 2, directory.9

Order of Directory Records

ISO 9660 also specifies the order of the records in a directory.10   They must be sorted by the relative

value of the File Identifier field.  Table 3 shows a set of unsorted File Identifiers.

Table 3. File Identifiers
1)

File Name
2)

SEPARATOR
1

3)
File Name
Extension

4)
SEPARATOR

2

5)
File Version

Number

MATTERHORN . MOUNT ; 1

PIKES_PEAK . ; 1

. HILLS ; 1

SKIING

The relative value of two File Identifiers is determined in the following way:

- If two File Names have the same content in all byte positions, then these two file names are

said to be equal in value.

- If two File Names do not contain the same number of byte positions, the shorter File Name

shall be treated as if it were padded on the right with all padding bytes set to (20) (the SPACE

character) and as if both File Names contained the same number of byte positions.

9ISO 9660:1988, pp. 11, section 7.6.1
10 ISO 9660:1988, pp.21-22, section 9.3

May 22, 1995 Page 13



Introduction to ISO 9660

- After any necessary padding to make the two File Names the same length, the

corresponding characters are compared, starting with the first byte position, until a byte position is

found that does not have the same character in both File Names.  The greater File Name is the one

that contains the character whose ASCII value is greater.  Table 4 shows the File Names from Table

3 and their relative values.

Table 4. Relative Value of File Names
1)

File Name
ASCII Code of
first character

Relative
value

PIKES_PEAK 80 3

MATTERHORN 77 2

32 1

SKIING 83 4

The File Name Extensions and Directory Names are also sorted in this manner.  The File Version

Number is sorted by padding the values with (30) (ASCII "0") on the left to make the lengths equal,

then comparing them as above.  Table 5 shows the Extensions and Version Numbers from table 3

and their relative values.

Table 5. Relative Value of Extensions and Version Numbers
3)

File Name
Extension

ASCII Code of
first character

Relative
Value

5)
File Version

Number
ASCII Code of
first character

Relative
Value

MOUNT 77 3 1 31 2

32 1 1 31 2

HILLS 72 2 1 31 2

32 1 30 1

May 22, 1995 Page 14



Introduction to ISO 9660

The Directory records are then sorted as follows:

- First in ascending order relative to the File Name (or Directory Name)

- Second in ascending order relative to the File Name Extension.

- Third, in descending order relative to the File Version Number.

- Forth, in descending order relative to the value of the Associated File Flag in

   the File Flags Field. (The associated file comes first, then the file it is

   associated with).

- Last, in the order of the File Sections of the file. (Only valid if the file is recorded

   in interleaved mode).

following the above rules, the example started in table 3 is sorted as shown in table 6.

Table 6. Sorted File Identifiers
1)

File Name
2)

SEPERATOR
1

3)
File Name
Extension

4)
SEPERATOR

2

5)
File Version

Number

. HILLS ; 1

MATTERHORN . MOUNT ; 1

PIKES_PEAK . ; 1

SKIING

The Path Table

The Path Table indicates to the operating system a short cut to each directory on the disc rather than

making the operating system read through each directory to get to the file it needs.  This is done

primarily to enhance performance.  For each directory other than the Root directory, the path table

contains a record that identifies the directory, its parent directory, and its location11.

11See Appendix A, Table 16, page VII

May 22, 1995 Page 15



Introduction to ISO 9660

Most operating systems read the Path Table once and keep it in memory, rather than reading it over

and over again.  In the example shown in figure 5, page 9 ( the Directory Hierarchy ), a system that

does not make use of the path table would have to read the root directory to find the location of the

ALPS directory, then read the ALPS directory to find the location of the AUSTRIAN directory, then

read the SKIING directory to find the location of the file MATTERHORN.MOUNT;1.  By making

use of the Path Table, the operating system can look up the location of the SKIING directory in the

Path Table, read the SKIING directory and find the location of the file.  This requires only one seek

on the CD-ROM, rather than four.  The time difference, for a typical drive with a seek time of 250

msec, is 3/4 of a second.  When accessing many files, this difference can significantly affect

performance.

Levels of Interchange

ISO 9660 defines three nested levels of interchange which affect the length of the File Identifiers and

whether the files must be contiguous or not.  Level 1 imposes the most restrictions above and

beyond what is specified in ISO 9660.  Level 2 impose fewer restrictions, and Level 3 imposes none

beyond what is specified in ISO 9660.

Level 1:

-  each file shall consist of only one File Section.  This means that the files must be

contiguous.

-  a File Name cannot contain more than eight d-characters or d1-characters.

-  a File Name Extension cannot contain more than three d-characters or d1-characters.

-  a Directory Identifier cannot contain more than eight d-characters or d1-characters.

An example of Level 1 would be an ISO 9660 disc for the MS-DOS environment, restricted to Level

1 interchange to accommodate MS-DOS's file naming limitations.  An important point to note here is

that the Level 1 restrictions are more restrictive than the MS-DOS naming conventions.  File

May 22, 1995 Page 16



Introduction to ISO 9660

Identifiers are still limited to the d-characters as shown in table 1, and Directory Identifiers are limited

to d-characters and cannot have an extension.

Level 2:

-  each file shall consist of only one File Section.  This means that the files must be

contiguous.

An example of Level 2 would be an ISO 9660 disc for the Macintosh and UNIX environments,

restricted to Level 2 interchange, to allow longer file names.

Level 3:

no restrictions apply beyond what is specified by ISO 9660.

An example of Level 3 would be a CD-ROM-XA disc, which has interleaved data and audio files.

ISO 9660 Implementation Requirements

ISO 9660 also defines requirements for systems that originate or create ISO 9660 volumes and for

systems that receive or read ISO 9660 volumes.  The requirements for the originating system are

primarily of interest to people writing pre-mastering software and will be only briefly mentioned.

Pre-mastering is the actual process of creating an ISO 9660 volume.  In general, an originating, or

pre-mastering system must be able to record a set of files and all of the descriptors described by ISO

9660.  The originating system may, however, be restricted to one of the Levels of Interchange.

Anyone interested in this level of understanding needs to read the actual ISO 9660:1988

specification.

The receiving system is the system that reads an ISO 9660 disc and makes the data accessible to the

user.  The receiving system is expected to be able to read the files and descriptors on a volume that

May 22, 1995 Page 17



Introduction to ISO 9660

meets at least one of the above interchange levels.  It is also expected to make the information in

these files available to the user.  All of them except for the Associated Files, which we will discuss in

more detail later.  The receiving system is also expected to make available to the user much of the

information in the Volume Descriptors and Path Table.  All of the following information should be

visible to the user:

From the Primary Volume Descriptor:

-  Volume Identifier

-  Volume Set Identifier

-  Copyright File Identifier

-  Abstract File Identifier

-  Bibliographic File Identifier

From each Supplementary Volume Descriptor:

- Volume Identifier

- Bit 0 of the Volume Flags field, which indicates if the escape sequences used are registered

- Escape Sequences, which define the d1-character set

- Volume Set Identifier

- Copyright File Identifier

- Abstract File Identifier

- Bibliographic File Identifier

May 22, 1995 Page 18



Introduction to ISO 9660

From each Path Table Record:

- Parent Directory Number

- Directory Identifier

From each Directory Record:

- File Name of a File Identifier

- File Name Extension of a File Identifier

- Directory Bit of the File Flags field

Similar to the Levels of Interchange, which apply to the originating system, ISO 9660 also defines

Levels of Implementation, which apply to the receiving system:

Level 1 implementation:

- At level 1, the receiving system does not have to make any of the data contained in

  and pointed to by the Supplementary Volume Descriptors available to the

   user.  Most implementations are Level 1.

Level 2 implementation has no such restrictions.

Implementations of ISO 9660

As figure 7. shows, each operating system has its own specific file system.  Independent of the

operating systems is ISO 9660.

May 22, 1995 Page 19



Introduction to ISO 9660

HFS

FAT

UFSMacintosh
OS

MS-DOS

UNIX

ISO-9660

Figure 7. ISO 9660 World View

In order for a given platform to transparently implement ISO-9660, the operating system must

convert the ISO-9660 file system into something that looks like its normal file system.  This way, the

application programs can use the ISO-9660 disc as if were a native read only file system.

DOS

Under MS-DOS, a program called Microsoft CD-ROM Extensions (MSCDEX.EXE) intercepts

operating system calls to the CD-ROM and makes the ISO-9660 volume look like a normal, read

only, hard disk.  However, MS-DOS does not support File Version Numbers, which are part of an

ISO 9660 File Identifier.  To properly handle the File Version number, when MS-DOS requests a

File Identifier from the ISO-9660 volume, Extensions modifies the File Identifier it returns to the

operating system by stripping off the File Version Number and only returning the file with the

highest version number.  To the operating system and the user, the ISO-9660 disc is accessed using

a drive letter, just like a write protected hard disk or floppy disk, or network drive.

May 22, 1995 Page 20



Introduction to ISO 9660

When creating discs for the DOS environment, the biggest pitfall that developers encounter is that the

ISO 9660 file naming conventions.   ISO-9660 is much more restrictive than DOS as to the

characters that may be used, but much less so as to the length of the names.

MS-DOS file names are limited to eight characters in the file name, and 3 characters in the file name

extension.  ISO-9660 File Identifiers can be up to 30 characters, and does not specifically limit the

length of the Name or the Extension.  If the pre-mastering system is DOS based, the length is not a

problem, but if the disc is being pre-mastered on a Macintosh or UNIX machine, for example, the

file names may be longer than DOS allows.  When this disc is read on a DOS machine, the names

appear to be truncated, but DOS cannot access the files, as shown in table 7.

Table 7. Long ISO File Identifiers under MS-DOS

Original ISO-9660 File Identifier File Name as seen by MS-DOS Response when accessed

MATTERHORN.MOUNT;1 MATTERHO.RNM File Not Found

EVEREST.MNT;1 EVEREST.MNT OK

MS-DOS allows a much larger group of characters to be included in file names than does ISO -9660.

If an ISO-9660 Volume is made using characters that are allowed under MS-DOS, but do not

conform to the d-character set, as shown in figure 2, there is a good chance that some files will not

be readable.  The files appear normally in the directory, but DOS may or may not be able to open all

of the files.  This problem is particularly perplexing since the file with the illegal character can be

read, but the next file after it may not be.  This problem occurs if you have a set of files, which have

the same names up to some point, after which one file has an illegal character, and one file a

SEPARATOR 1 (period, "."), as demonstrated in table 8.

May 22, 1995 Page 21



Introduction to ISO 9660

Table 8. Illegal d-characters and Microsoft extensions

INSTALL-1.TXT;1 Reads OK

INSTALL.BAT;1 Reports "File not found"

INSTALL.EXE;1 Reports "File not found"

INSTALL.TXT;1 Reports "File not found"

In the example shown in table 10, the first name has an illegal ISO-9660 character, the dash ( - ).

This file is readable.  However, when attempting to read any of the other three files, MS-DOS

reports "File not found".  This appears to be occurring because Microsoft Extensions assumes that

the directory records are sorted properly and when it sees a name that, if sorted properly, would

come after the name it is searching for, it stops searching and proclaims that it cannot find the file.  In

the example shown in table 9, if MS-DOS is searching for INSTALL.BAT, it reads the first File

Name and compares it to INSTALL.BAT.  If properly sorted according to the rules specified in ISO

9660, INSTALL.BAT would appear before INSTALL-1.TXT, as shown in table 11.  However, the

actual order of the records has INSTALL-1.TXT first, before any of other INSTALL files.

Therefore, when MS-DOS searches for INSTALL.BAT, it sees INSTALL-1.TXT, which should

come after INSTALL.BAT, and comes to the conclusion that INSTALL.BAT is not there.

Table 9.  Sorting illegal ISO-9660 File Identifiers
Order of directory records in
ISO-9660 Volume

Correctly sorted directory
records

INSTALL-1.TXT;1 INSTALL.BAT;1

INSTALL.BAT;1 INSTALL.EXE;1

INSTALL.EXE;1 INSTALL.TXT;1

INSTALL.TXT;1 INSTALL-1.TXT;1

May 22, 1995 Page 22



Introduction to ISO 9660

What appears to be causing this is that most pre-mastering packages do not sort the names properly

IF  they are told to put illegal d-characters in the ISO 9660 volume.  In particular, they appear to no

longer sort the File Name and the File Name Extension separately, but treat the entire File Identifier

as the File Name.  The best way to avoid this is to not have any illegal d-characters in the File

Names, Directory Names, or File Name Extensions.

Macintosh

The Macintosh supports ISO 9660 by adding an extension onto the operating system, called the

foreign file access extension.  This operating system extension, along with code that tells it how to

convert ISO-9660, makes an ISO-9660 disc appear on the desktop just like any other write-protected

HFS Volume, with its own icon on the Macintosh desktop.

Even though the ISO 9660 disc looks like a normal volume, not all of the data that the Macintosh

needs to display the volume on the desktop is available in the ISO 9660 data. The additional

information gets created by the ISO-9660 access software when an ISO directory is opened.  The

result of this is that the user has no control over the placement of folders and files, and an ISO 9660

disc loses some of the look and feel so important to the Macintosh.

Another problem that occurs with ISO 9660 on the Macintosh has to do with how the Macintosh file

system implements executable files, or applications as they are known to Mac users.  All of the files

on a standard ISO 9660 disc will appear on the desktop as generic documents.  To correct this

deficiency, Apple uses the reserved system use field in the directory record and associated files in

ISO 9660 to add extra information that allows applications to run from an ISO 9660 disc.  See the

discussion on extensions to ISO 9660 for more details, page 29.

May 22, 1995 Page 23



Introduction to ISO 9660

For some developers, another source of difficulties is the File Version Number.  The File Version

Number is added to each file when it is pre-mastered to make the File Identifiers comply with the

ISO specification.  Applications that worked from the hard disk may not work from the CD-ROM for

the simple reason that they are trying to find a file whose name now has a ';1' on the end of it.

UNIX

UNIX systems typically support ISO 9660 by including the programs into the operating system,

rather than using external conversion programs or extension drivers.  This is normally done by

recompiling the operating system along with the new code to support CD-ROM and ISO 9660.  The

CD-ROM can then be "mounted" on an existing directory in the UNIX directory structure.  On

UNIX style systems, instead of having different drive letters or volumes, different drives, or

devices, are "mounted" on a directory.  This means that each UNIX system only has one directory

structure, and all devices are part of that structure as shown in figure 8.

/ (root)

/etc /usr /cdrom /backup

Figure 8.  UNIX directory

In this example, the etc directory may be on the hard disk with the operating system, the usr

directory may be a second hard disk used to store user's files, the cdrom directory may be an ISO-

9660 disc, and the backup directory may be a network drive on an entirely different system.

Unfortunately, because of the way UNIX has historically been implemented, there is quite a bit of

variation among UNIX systems as to how they support CD-ROM and how the files on the CD-ROM

May 22, 1995 Page 24



Introduction to ISO 9660

will appear to the user.  As there are well over 100 UNIX compatible Operating Systems currently

available, no attempt will be made to address each one separately.  The best way to find out how a

system will react is to read the manual pages for the mount command and for cdrom and the CD-

ROM file system.  Some of the most common idiosyncrasies will be mentioned, however.

Some UNIX systems do not modify the file names at all and the user will see upper case files names,

with the version number appended.  This seems reasonable, since it shows the complete File

Identifier, but on many systems the semi-colon character has special meaning and causes access

difficulties.  Other systems will strip off the version number in much the same way that MSDOS

does, and have the option to either convert the characters to lower case or to leave them uppercase.

Of the systems that have this option, some default to converting to lower case, while others default to

leaving everything upper case. See table 10 for examples of what these different options look like.

Table 10. UNIX File name conversions

ISO 9660 File Identifier Conversion being applied File Name as it appears to user

MANPAGES.1;1 none MANPAGES.1;1

MANPAGES.1;1 no version number MANPAGES.1

MANPAGES.1;1 lower case, no version number manpages.1

This provides the system administrator with a lot of flexibility, but makes it difficult for applications

that have file names "hard coded" into the programs.  These discs have to include clear instructions

to the user to have the system mount the disc with filenames in the proper case.  Anyone who has

been involved in porting applications to different UNIX systems will find this situation not at all

unusual.

May 22, 1995 Page 25



Introduction to ISO 9660

Extensions to ISO 9660

ISO 9660 works well for a majority of operating systems.  In some cases, however, it has proven to

be difficult or impossible to use.  To make it more usable in their respective environments, Apple and

the UNIX community established extensions to ISO 9660.  The Apple Extensions were created by

Apple and are generally known as Apple ISO 9660.  The UNIX community assembled a group of

people created what is known as the Rock Ridge Proposal.

Recordable CD, or CD-R, opens up the possibility of updating information already on a CD-ROM.

ISO-9660 was never intended to support this function.  To meet this new requirement, a group met

at Frankfurt, Germany and developed an update to ISO 9660.  This update is called the Frankfurt

Group Proposal - Volume and File Structure for Read-Only and Write-Once Compact Disc.  At this

point in time, the Frankfurt Proposal has been approved by the European Computer Manufacturers

Association as standard ECMA 168.  The Frankfurt Proposal is very complex and difficult to

implement.  To simply provide a way to update information on an ISO 9660 volume, a much simpler

method has been implemented by several companies.  This method is commonly known as

Updatable ISO 9660 or Multi-Session ISO 9660.

Apple ISO 966012

The Macintosh operating system requires a lot of specialized data to support its graphical user

interface.  The information needed to implement these features is stored in two places by the HFS file

system.  Some information is stored in special fields in the HFS directory record.  Most of the data is

stored in the file itself, in a specially formatted area called the resource fork.  The data in the resource

12For further information, see "CD-ROM & the Macintosh Computer, A Gentle, Technical Introduction to Creating
CD-ROMS for the Apple Macintosh computer family" and "The Apple CD-ROM Handbook"

May 22, 1995 Page 26



Introduction to ISO 9660

fork is normally only accessible through system calls to a part of the Macintosh Operating system

known as the Resource Manager.  The resource fork contains things like the Menu layout, the

Window definitions, user preferences, and text messages that the application displays, and the actual

executable code in the case of an application.  The remaining data in a file is called the data fork.  The

data fork is the same as a DOS or UNIX file.

Most Macintosh files have both forks, a data fork and a resource fork.    ISO 9660 accommodates

the resource fork very well through the use of the associated file.  When a Macintosh file is recorded

in an ISO volume, the resource fork is recorded as an associated file, and the data fork is recorded as

a normal file.

Unlike the resource fork, there is some information vital to the Macintosh environment that can not

be stored on a standard ISO 9660 volume. The native Macintosh file system, HFS, stores

information regarding the file icon's position on the screen, what the icon looks like, what type of

file it is, what application created it, and file attributes.  The file attributes contain information such as

if the file is visible, if the file is locked, and if it is an alias.    To capture this information on an ISO

9660 volume, Apple created an extension to ISO 9660, making use of the System Use Field in the

Directory Record.  This field is allocated in ISO 9660, but how it is used is left open.

Apple was not, however, able to make an ISO disc look exactly like an HFS disk.  Currently, there

is no way to record the positions of icons on the desktop in an ISO 9660 volume, so these are

created when a directory is opened, with no way to control where they are located.  Also, because of

the way the Finder works, files and folders on an ISO disc only appear with generic icons, as seen in

figure 9.

May 22, 1995 Page 27



Introduction to ISO 9660

Folder

Document Application

Figure 9. Apple Macintosh generic Icons

These generic icons are displayed even if the correct icons are in the Apple extensions area because

the Finder assumes there is a desktop database from which to retrieve these icons and uses a special

call to retrieve them.  This part of the Finder was written to be very HFS specific and does not work

with ISO 9660 volumes even if there is a file called desktop in the volume.  If these files are copied

to an HFS volume, however, the correct icon will be shown.  If the Apple extensions are not

present, all files will show as generic documents.

The Protocol Identifier

To identify a volume as having the Apple extensions and inform the operating system what type of

file name translation to perform, the System Identifier field in the Primary Volume Descriptor is

defined to be the following13:

"APPLE COMPUTER, INC., TYPE: " followed by a four byte identifier.

The four byte identifier tells the system what version of Apple Extensions this is and whether or not

to perform automatic file name translation for ProDOS (used on the Apple //GS).  A typical

identifier, that tells the system not to perform ProDOS translation and that the version number is 2 is

"0002".

13"CD-ROM & the Macintosh Computer...", pp. 23

May 22, 1995 Page 28



Introduction to ISO 9660

The Directory Record System Use Field

The System Use Field14  of an ISO 9660 Directory record is used to store the additional information

needed by the Macintosh Operating system.  The additional fields are defined as shown in table 1115 .

Table 11. Apple ISO 9660 Directory Record System Use Field

BP Field Name Content

1 to 2 Signature ID (41)(41) "AA" Apple signature

3 SystenUse Extension Length (0E) bytes

4 System Use ID (02) for HFS

5 to 8 HFS fileType (MSB-LSB)

9 to 12 HFS fileCreator (MSB-LSB)

13 to 16 HFS finder flags (MSB-LSB)

Apple also allows more than one System Use Extension field in a single directory entry, limited only

by the size of the directory entry (it cannot be larger than a logical block).  Apple intended for the

Signature ID to be used to identify extensions for different systems.  Each system could then ignore

the fields whose Signature ID it did not recognize.  This method of sharing the System Use field was

later adopted by both the Rock Ridge Group and the Frankfurt Group for extending the ISO 9660

Directory record.

14See ISO 9660:1988, pp. 21, section 9.1.13
15"CD-ROM & the Macintosh Computer...", pp. 25

May 22, 1995 Page 29



Introduction to ISO 9660

The Rock Ridge Proposals

Rock Ridge is a group of companies that began meeting in July 1990 to resolve issues with ISO

9660 that make it difficult to use as a distribution medium for some operating systems (UNIX based

systems being their primary concern).  Some of the issues addressed include long filenames with

lower case characters, directory structures much deeper than the eight levels allowed by ISO 9660,

different file types and access privileges.  The Rock Ridge proposals offer industry standard

solutions for the distribution of data and software on CD-ROM media by extending the ISO

9660:1988 specification while remaining completely compliant with it.

These proposals deal with two main areas.  First, it establishes a standardized way for multiple file

system extensions to coexist in one ISO 9660 Directory record.  I then defines a way to record

POSIX16  files and directories in an ISO volume without modifying their original directory

information.  POSIX is a standard for a Portable Operating System Interface much of which is based

on how the UNIX operating system works.  This allows standard UNIX style file names and

directories to be recorded in an ISO 9660 volume without any modification.

Rock Ridge System Use Sharing Protocol (SUSP)

The System Use Sharing Protocol provides a standard way for multiple systems to record system

specific extensions in the System Use field by defining a generic field format for System Use Fields,

and a set of generic System Use Fields for that can be used to:

• continue the System Use Fields in an area outside of the directory record

• do additional padding

• identify that SUSP is being used

16 Institute of Electrical and Electronic Engineers Portable Operating System Interface IEEE Std. 1003.1-1990

May 22, 1995 Page 30



Introduction to ISO 9660

• terminate the SUSP area

• identify which system specific extension is being used.

The System Use Field Format is as shown in table 12.

Table 12.  SUSP System Use Field

BP Field Name Content

1 to 2 Signature Word Identifies what type of System Use Field this is

3 Length of System Use Field

(LEN_SUF)

bytes

4 System Use Field Version Version Number of System Use Field

5 to LEN_SUF Data Content of System Use Field

The Signature Word identifies what the following system use field will be used for.  The Signature

Words that are defined by SUSP are:

"CE" Continuation Area.  This field points to the Logical Block Number where the System

Use Area is continued.  This allows the System Use data to extend beyond a single

Logical Block.

"PD" Padding Field.  More than one of this field may appear in any given System Use

Area.  This is used to fill up empty areas such as might occur at the end of a Logical

Block before going on to the Continuation Area.

May 22, 1995 Page 31



Introduction to ISO 9660

"SP" System Use Sharing Protocol Indicator.  Only one of this field can be in a Volume.  It

must be in the System Use Area of the first directory record of Root directory.  This

identifies the Volume as adhering to the System Use Sharing Protocol.

"ST" System Use Sharing Protocol Terminator.  This field is an optional field to mark the

end of SUSP's use of the System Use area.

"ER" Extensions reference.  This field may be mandatory or not, depending on the

specification which it describes.  This is determined by specifications that make use

of the System Use Sharing Protocol.

For more information regarding these System Use Fields, see the System Use Sharing Protocol

proposed specification, available on the DMI "demo" disc.  The System Use Sharing Protocol does

not provide new features by itself, but provides a common base on which to establish new ISO 9660

extensions, such as the Rock Ridge Interchange Protocol.

Rock Ridge Interchange Protocol (RRIP)

Rock Ridge Interchange Protocol was designed to allow users of POSIX and other UNIX like

systems to retain much of the directory information that is in the native file system.  These systems

use directory entries for much more than just pointing to files.  Directory entries can point to other

entries (symbolic links or aliases) or to device drivers that are linked to peripheral devices such as

hard disks, tape drives and CD-ROM drives (device files).  The directory entry includes information

that lets the system know the file type. Is it a regular file, a directory, a symbolic link, or a device

file?  The Directory entry also has information regarding who has permission to read, write and

execute each file.  Most of these systems are multi-user systems, and must be able to limit who can

May 22, 1995 Page 32



Introduction to ISO 9660

write to the device file that contains the operating system, or it could accidentally (or purposely?) be

erased.

File Names

The Rock Ridge Interchange Protocol is intended to be portable across a variety of POSIX compliant

systems, so it makes suggestions that increase portability.  However, unlike ISO 9660, it does not

set hard and fast limits on the character set that can be used in file names and directory names.

Systems that support RRIP must, however, treat file names that are the same except for the case of

the letters as being different files (a file named alpine is not the same as a file named Alpine).

RRIP suggests that the only the characters in table 13 be used for maximum portability.

Table 13. Suggested Characters for RRIP File Identifiers

Suggested Characters ASCII Hexadecimal Code

'A' through 'Z" (41) - (5A)

'a' through 'z' (61) - (7A)

period . (2E)

underscore _ (5F)

hyphen - (2D)

Deep directories

On most POSIX type systems, not only do the file names tend to be long, but the directories tend to

get much deeper than the 8 levels allowed by ISO 9660.  For this reason, RRIP defines a way to

remap deep directories that allows it to be ISO compliant, while at the same time retaining the deep

directory structure on systems supporting RRIP.

May 22, 1995 Page 33



Introduction to ISO 9660

Original (RRIP) 
Structure

RootLevel 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Remapped ISO 9660 Structure

Root

Alps

Austrian

Skiing

Equipment

downhill

purchase

patagonia

Edelweiss_Ski

Climbing

ALPS

AUSTRIAN

RR_MOVED

SKIING

EQUIPMENT

DOWNHILL

PURCHASE

PATAGONIA

EDELWEISS_SKICLIMBING

Figure 10. Remapped Directory structure

A directory that was originally at the eighth level is relocated higher up in the directory structure as

shown in figure 10.  Generally, the pre-mastering software will handle relocating directories

automatically.  Probably the most common pre-mastering package that supports RRIP, Makedisc

from Young Minds, Inc., creates a new directory at the root level, called RR_MOVED, and places all

relocated directories here.  This directory is only visible on systems that do not support RRIP.  On

RRIP systems, you see the original, deep, directory structure.

For more information on the exact layout of the RRIP System Use Fields, see the Rock Ridge

Interchange Protocol proposed specification, available on the DMI "demo" disc.

May 22, 1995 Page 34



Introduction to ISO 9660

Updatable ISO 9660

A simple method for allowing CD-WO discs to be updated has been implemented by several

companies.  This technique involves writing a new, complete directory structure each time the disc is

updated.  The new structure is recorded as an ISO 9660 structure, starting at 00:02:16 into the latest

recording session, another session being recorded each time the disc is updated.  For an explanation

of recording sessions and CD-WO in general, see the Compact Disc Terminology paper, available

from DMI, and the Philips and Sony Orange book, Recordable Compact Disc Systems.  A simple

volume that has not been updated, and then the same disc after updating is shown in figure 11.  The

ISO 9660 directory structure in Session 1 only reflects files 1 and 2.  The directory structure

recorded in session 2, however, reflects not only files 3 and 4, recorded during session 2, but also

files 1 and 2, recorded in the session 1.

PVD

root dir

file 1

file 2

Session 
Number

1

PVD

root dir

file 1

file 2

PVD

root dir

file 3

file 4

2

Figure 11. Updatable ISO 9660

May 22, 1995 Page 35



Introduction to ISO 9660

In order for a CD-ROM drive to recognize the updated areas, the drive must be able to recognize that

there are multiple sessions on the disc, and the ISO 9660 implementation must be able to use the

Primary Volume Descriptor from the last session on the disc.  This is commonly known as "Multi-

Session" compatibility.

The Frankfurt Group Proposal, ECMA 168

The Frankfurt Group is an ad hoc group of companies which share common interests and goals

concerning Read Only and Write Once Compact Disc Technology.  The Write Once Technology is

governed by the Philips and Sony Orange Book, Recordable Compact Disc Systems.  The Frankfurt

Group Proposal covers two types of Volume and File Structures.  Type 1 is the original ISO 9660

specification, and is used only for Read-Only discs.  Type 2, the Frankfurt Proposal, is an extension

to Type 1 that allows incremental recording of a Compact Disc Write Once (CD-WO or CD-R) and

updates to be recorded to an existing CD-WO.  This proposal is much more complex and flexible

than the Updatable ISO 9660.  In addition to providing a way to incrementally record and update

discs, Type 2 also defines a framework that furnishes the same type of functionality that the Rock

Ridge Proposals provide.  The specification, however, is not the same as the Rock Ridge Proposals.

For more information regarding the Frankfurt Proposal, see ECMA 168 - Volume and File Structure

for Read-Only and Write-Once Compact Disc.

May 22, 1995 Page 36



Introduction to ISO 9660

Summary of ISO 9660

• An ISO 9660 volume consists of the following data structures:

- Volume descriptors (what is this volume, and where are the other data structures)

- The Directory Structure (where are and what are the names of the files and

directories)

- The Path Table (what are the locations and parent directories of each directory)

• ISO 9660 defines three levels of interchange for the Originating System:

- Level 1 (File names limited to 8.3, directory names limited to 8, and all files must be

contiguous) To insure compatibility across the most platforms, restrict the

ISO volume to Level 1 Interchange.

- Level 2 (All files must be contiguous)

- Level 3 (no limitations beyond the ISO specification itself)

• ISO 9660 defines two levels of Implementation for the Receiving System:

- Level 1 (Receiving System can ignore any Supplementary Volume Descriptors)

- Level 2 (Receiving System must utilize all data available)

• Example of ISO 9660 Implementations:

- MS-DOS:

• MS-DOS supports ONLY Level 1 Interchange.

• Access to ISO 9660 volumes is performed by Microsoft Extensions,

MSCDEX.EXE.

• Extensions strips off the version number and only recognizes the highest version.

• Extensions can not find files and directories with File Identifiers longer than 8.3.

• Extensions does not handle illegal ISO characters (non d-characters) very well.

- Apple Macintosh:

• Apple Macintosh supports Level 2 Interchange.  Volumes that must be usable

under MS-DOS, as well as Macintosh, must be restricted to Level 1 Interchange.

May 22, 1995 Page 37



Introduction to ISO 9660

• Access to ISO 9660 volumes performed by system extensions.

• Layout of folders and files on desktop is created when an ISO 9660 directory is

opened.

• ISO 9660 disc must include Apple extensions to run Macintosh applications from

the ISO volume.

• ISO 9660 file identifiers include the version number.

- UNIX

• Most UNIX type systems support Level 2 Interchange.  Volumes that must be

usable under MS-DOS, as well as UNIX, must be restricted to Level 1

Interchange.

• Access to ISO 9660 volumes is usually incorporated into the operating system.

• There is considerable variation between UNIX type implementations as to how the

File Identifiers appear to the user.

• Some systems have options to convert File Identifiers to lower case, and remove

the File Version Number, so the same volume can appear different, even on the

same machine.

• Extensions to ISO 9660

- Apple ISO 9660 provides the Macintosh system with additional data needed to

launch applications from an ISO 9660 volume.

- The Rock Ridge Proposals provide a more UNIX like environment for

distributing data to a variety of UNIX like platforms.

- Updatable ISO 9660 provides a simple way to add more data to a previously

recorded CD-WO.

- The Frankfurt Group Proposal, ECMA 168, provides a way to append data to a

CD-WO, and provide a more UNIX like environment for distributing data to a

variety of UNIX like platforms.

May 22, 1995 Page 38



Introduction to ISO 9660

Appendix A: ISO 9660 Structures

Table 14. Primary Volume Descriptor

BytePosition Field Name Content

1 Volume Descriptor Type 1

2 to 6 Standard Identifier CD001

7 Volume Descriptor Version 1

8 Unused Field (00)17  byte

9 to 40 System Identifier a-characters allowed18

41 to 72 Volume Identifier d-characters allowed19

73 to 80 Unused Field (00) bytes

81 to 88 Volume Space Size Number of logical blocks in the Volume

89 to 120 Unused Field (00) bytes

121 to 124 Volume Set Size The assigned Volume Set size of the Volume

125 to 128 Volume Sequence Number The ordinal number of the volume in the Volume Set

129 to 132 Logical Block Size The size in bytes of a Logical Block

133 to 140 Path Table Size Length in bytes of the path table

141 to 144 Location of Type L Path Table Logical Block Number of first Block allocated to the Type L
Path Table, Type L meaning multiple byte numerical values are
recorded with least significant byte first.  This value is also
recorded with least significant byte first.

145 to 148 Location of Optional Type L Path
Table

0 if Optional Path Table was not recorded, otherwise, Logical
Block Number of first Block allocated to the Optional Type L
Path Table.

149 to 152 Location of Type M Path Table Logical Block Number of first Block allocated to the Type M
Path Table, Type M meaning multiple byte numerical values are
recorded with most significant byte first.  This value is also
recorded with most significant byte first.

153 to 156 Location of Optional Type M Path
Table

0 if Optional Path Table was not recorded, otherwise, Logical
Block Number of first Block allocated to the Type M Path Table.

17Numbers surrounded by parentheses () are hexadecimal numbers.
18  a-characters are A-Z, 0-9, _, space, !, ", %, &, ', (, ), *, +, ,, -, ., /, :, ;, <, =, >, ?
  see ISO-9660:1988, Annex A, Table 15
19d-characters are A-Z, 0-9, _
  see ISO-9660:1988, Annex A, Table 14

May 22, 1995 Page I



Introduction to ISO 9660

157 to 190 Directory record for Root Directory This is the actual directory record for the top of the directory
structure.  See the section on directory records for the format of
this data.

191 to 318 Volume Set Identifier Name of the multiple volume set of which this volume is a
member.  d-characters allowed.

319 to 446 Publisher Identifier Identifies who provided the actual data contained in the files.  a-
characters allowed.

447 to 574 Data Preparer Identifier Identifies who performed the actual creation of the current
volume. a-characters allowed.

575 to 702 Application Identifier Identifies the specification of how the data in the files are
recorded.  For example, this field might contain SGML if the
files were recorded according to the Standard Generalized Markup
Language

703 to 739 Copyright File Identifier Identifies the file in the root directory that contains the
copyright notice for this volume.  If there is no copyright file,
this field should contain all spaces (20) Level 1 interchange
restrictions apply.20

740 to 776 Abstract File Identifier Identifies the file in the root directory that contains the abstract
statement for this volume.  If there is no copyright file, this
field should contain all spaces (20) Level 1 interchange
restrictions apply.

777 to 813 Bibliographic File Identifier Identifies the file in the root directory that contains
bibliographic records.  ISO-9660 does not specify the format of
these records.  If there is no copyright file, this field should
contain all spaces (20) Level 1 interchange restrictions apply.

814 to 830 Volume Creation Date and Time Date and time at which the volume was created.

Represented by seven bytes:
1: Number of years since 1900
2: Month of the year from 1 to 12
3: Day of the Month from 1 to 31
4: Hour of the day from 0 to 23
5: Minute of the hour from 0 to 59
6: second of the minute from 0 to 59
7: Offset from Greenwich Mean Time in
    number of 15 minute intervals from
    -48(West) to +52(East)

831 to 847 Volume Modification Date and Time Date and time at which the volume was last modified.
Represented the same as the Volume Creation Date and Time

848 to 864 Volume Expiration Date and Time Date and Time at which the information in the volume may be
considered obsolete.  Represented the same as the Volume
Creation Date and Time

865 to 881 Volume Effective Date and Time Date and Time at which the information in the volume may be
used.  Represented the same as the Volume Creation Date and
Time

20For a description of the level 1 interchange restrictions, see page <?>

May 22, 1995 Page II



Introduction to ISO 9660

882 File Structure Version 1

883 Reserved for future standardization (00)

884 to 1395 Application Use This field is reserved for application use.  Its content is not
specified by ISO-9660.

1396 to 2048 Reserved for future standardization All bytes must be set to (00).

May 22, 1995 Page III



Introduction to ISO 9660

Table 15. Directory Record

BP Field Name Content

1 Length of directory Record
(LEN_DR)

Bytes

2 Extended Attribute Record Length Bytes - this field refers to the Extended Attribute Record, which
provides additional information about a file to systems that
know how to use it.  Since few systems use it, we will not
discuss it here.  Refer to ISO 9660:1988 for more information.

3 to 10 Location of Extent This is the Logical Block Number of the first Logical Block
allocated to the file.

11 to 18 Data Length Length of the file section in bytes

19 to 25 Recording Date and Time This is recorded in the same format as the Volume Creation Date
and Time

26 File Flags One Byte, each bit of which is a Flag:
Bit
0     File is Hidden if this bit is 1
1     Entry is a Directory if this bit is 1
2     Entry is an Associated file is this bit is 1
3     Information is structured according to
       the extended attribute record if this
       bit is 1
4     Owner, group and permissions are
       specified in the extended attribute
       record if this bit is 1
5     Reserved (0)
6     Reserved (0)
7     File has more than one directory record
       if this bit is 1

27 File Unit Size This field is only valid if the file is recorded in interleave mode.
Otherwise this field is (00)

28 Interleave Gap Size This field is only valid if the file is recorded in interleave mode.
Otherwise this field is (00)

29 to 32 Volume Sequence Number The ordinal number of the volume in the Volume Set on which
the file described by the directory record is recorded.

33 Length of File Identifier (LEN_FI) Byte

May 22, 1995 Page IV



Introduction to ISO 9660

34 to (33 +
LEN_FI)

File Identifier Interpretation depends on the setting of the directory bit in the
File Flags

If set to ZERO, then

The field refers to a File Identifier, as described below

If set to ONE, then

The field refers to a Directory Identifier, as described below.

34 + LEN_FI Padding Field Present only if the length of the File Identifier is an even
number.  If present, value is (00)

LEN_DR -
LEN_SU + 1

System Use (LEN_SU) Reserved for system use.  If necessary, so that the length of the
directory record is an even number of bytes, a (00) byte may be
added to terminate this field.

May 22, 1995 Page V



Introduction to ISO 9660

The Path Table Record contains the following fields:21

Table 16. Path Table Record

BP Field Name Content

1 Length of Directory Identifier

(LEN_DI)

Length in Bytes

2 Extended Attribute Record Length If an Extended Attribute Record is recorded, this is the length in

Bytes.  Otherwise, this is (00)

3 to 6 Location of Extent Logical Block Number of the first Logical Block allocated to the

Directory

7 to 8 Parent Directory Number The record number in the Path Table for the parent directory of

this directory

9 to (8 +

LEN_DI)

Directory Identifier This field is the same as in the Directory Record

(9 + LEN_DI) Padding Field Present only if LEN_DI is an odd number. (00)

21 ISO 9660:1988, pp. 22, section 9.4

May 22, 1995 Page VI



Introduction to ISO 9660

Appendix B: Common Q&A

1. What do I need to do to make my MS-DOS data ready for ISO-9660?

There are three things that need to be checked to insure that your disc will painlessly translate

to ISO-9660:

1- The characters used in the File Names must only be A-Z, 0-9, and _.  See figure 3, on

page 6.

2- The depth of the directory structure can not exceed 8 levels. See figure 5, on page 9.

3- The length of the path to any file can not exceed 255 characters.  See Table 1, on page 10.

To improve performance, you may also want to minimize the number of files in each

directory.  If there are over 50 files in a directory, you may notice some slowing while

reading files in this directory,  If there are over 250 files, you are very likely to notice that it

takes much longer to read some files in this directory.

2. What do I need to do to make my Macintosh data ready for ISO-9660?

See question 1.  In order for a disc to have Macintosh applications on it, the ISO-9660 data

must include the Apple extensions, otherwise, every file on the disc will appear to be a text

file to the Macintosh.  Also, ISO-9660 discs will have the version number appended to

each file name.  See Macintosh implementation of ISO-9660, page 23, and Apple

Extensions to ISO-9660, page 26.

3. Why use ISO 9660 on the Mac and what are the affects?

The primary reason for using ISO-9660 on a disc that will be running on the Macintosh is

that the same disc will need to run on other platforms, such as MS-DOS.  The primary

disadvantage to using ISO-9660 on the Macintosh is the loss of some of the "look and feel"

of the Macintosh user interface.  In particular, you must live with the restrictions on the file

names (see File Names, page 12), and you can not control where the folders open up to

May 22, 1995 Page VII



Introduction to ISO 9660

and how they are viewed (see Macintosh implementation of ISO-9660, page 23, and Apple

Extensions to ISO-9660, page 26).

4. What is a hybrid disc; what are the issues to consider?

In an effort to alleviate the disadvantages to using ISO-9660 on the Macintosh (see question

3), a scheme called the hybrid disc has been developed.  A hybrid disc is basically a disc

with two partitions on it.  It has both an ISO-9660 partition and an HFS partition.  When

this disc is mounted on the Macintosh, the Macintosh only sees the HFS partition.  On

other platforms, only the ISO-9660 partition is visible.

Until recently, the primary disadvantage to a hybrid disc was that any data that was common

to the different platforms had to be duplicated in both partitions.  This could significantly

limit the amount of data you could place on a hybrid disc.  There is now becoming available

a type of hybrid disc that blends the two partitions.  This allows us to only put data on the

disc once, and have both ISO-9660 and HFS directory structures point to the same data.

5. How do I make one disc that works on both my PC and Macintosh?

see questions 3 and 4.  Often, a disc such as this is created entirely on the Macintosh.  An

important point to note here is that if the ISO-9660 partition is created on the Macintosh,

any files that must be readable by MS-DOS must meet ISO-9660 level 1 Interchange.  That

is, the file names can not be longer than 8.3 (see Levels of Interchange, page 16 and

Implementations of ISO-9660, DOS, page 20).

6 .What do I need to do to make my UNIX data ready for ISO-9660?

See question 1.  The primary differences between ISO-9660 for UNIX and MS-DOS is that

UNIX generally can support Interchange level 2 (file names longer than 8.3), and UNIX

typically can handle larger subdirectories with less performance degradation.  An important

point to remember when dealing with ISO-9660 and UNIX is that the file names can appear

May 22, 1995 Page VIII



Introduction to ISO 9660

different on different systems.  Even on the same system, different mount options can

affect how, or if, the system translates the ISO-9660 file names. (See Implementations of

ISO-9660, UNIX, page 24).

7. Will ISO discs work on UNIX, MAC and DOS?

Yes, but...   Only files that meet the proper level of Interchange will be readable on any given

platform, i.e., UNIX and Mac files that are recorded longer than 8.3 will not be readable

by DOS (see Implementations of ISO-9660, DOS, page 19).

8. What is an Image file?

In the jargon of the industry, an Image file is a single data file that contains all of the data that

will be recorded to a CD.  Typically, this file will contain a complete ISO-9660 volume, or

an HFS volume, or a hybrid image with both ISO and HFS volumes.  If you can generate

an image file, your data is image ready.

9. How do I create an Image file?

There are software packages available that will create an ISO-9660 volume and record it to an

Image file.  These packages are normally call pre-mastering packages and are available

from companies such as Dataware Technologies, Meridian Data, Optical Media

International, and Trace.  There are too many packages to try and list them all here.  The

best way to choose one is to read reviews and talk to people who are using the package you

are considering purchasing.

May 22, 1995 Page IX



Introduction to ISO 9660

10. How do I send the Image file to the Mastering Facility?

Most pre-mastering packages contain options to write an ISO-9660 volume to a SCSI tape

drive as well as to an Image file.  Some packages also support writing to a CD Recordable

device.  Most mastering houses will accept 8mm Exabyte tapes, 4mm DDS tapes, and CD-

R discs as standard input.  If none of these options are available, but you do have an Image

file, the Image file may be backed up with a standard backup program such as tar on UNIX

systems, Retrospect on the Macintosh, and Sytos+ or Novaback on DOS.  If you will be

sending your Image file this way, be sure and call the mastering house to make sure they

can restore the particular backup format you are using.

May 22, 1995 Page X




